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1. Introduction

Substantial future progress in neutrino physics will be related to the long baseline ex-

periments as well as studies of the cosmic and atmospheric neutrinos. These studies are

expected to fill some of the outstanding gaps in our knowledge of neutrino properties, such

as the value of the leptonic mixing angle θ13, the type of the neutrino mass hierarchy, the

octant of the mixing angle θ23 and the size of the Dirac-type leptonic CP-violation. They

are also expected to improve the accuracy of the determination of the already known param-

eters, such as the mass squared differences ∆m2
21

and |∆m2
31
| and the mixing parameters

θ12 and sin2 2θ23.
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The key element of these experiments is that neutrinos propagate long distances inside

the Earth before reaching detectors, and therefore a careful analysis of the Earth matter

effects on neutrino oscillations is necessary (see, e.g., references in [1, 2] as well as refs. [3 –

21]). In a previous publication [1] we have studied these matter effects by making use of

“neutrino oscillograms” of the Earth as the main tool. These are the contours of constant

oscillation probabilities in the plane of neutrino energy and nadir angle. The plots of

this type were introduced by P. Lipari in 1998 (unpublished) and then appeared in several

publications [22 – 25, 1]. The oscillograms exhibit a very rich structure with local and global

maxima and minima, including the MSW [26, 27] resonance maxima in the mantle and

core of the Earth and the parametric enhancement [22, 4, 5, 28 – 33] ridges for core-crossing

neutrino trajectories. It was shown in [1] that all these features, including the local and

global minima and maxima as well as saddle points can be understood in terms of various

realizations of just two conditions: the generalized amplitude and phase conditions. We

refer the reader to ref. [1] for details. It has been shown that these oscillograms are very

useful for gaining an insight into the physics of neutrino oscillations in the Earth and should

help plan the future experiments as well as interpret their data.

The analysis in [1] was performed in the limit of vanishing “solar” mass squared split-

ting ∆m2
21

. While this approximation is quantitatively well justified at relatively high

neutrino energies (Eν & 3 GeV), it is less satisfactory at lower energies and also misses

some important 3-flavor features of neutrino oscillations, most notably CP violation. In

the present paper we extend the study of [1] to the case ∆m2
21 6= 0 and consider 3-flavor

effects in neutrino oscillations in the Earth, with the emphasis on the effects of the CP

violating phase δ. We explore in detail

• the effects of the 1-2 mixing and splitting on the oscillation probabilities,

• the interference of the 1-2 and 1-3 (i.e., “solar” and “atmospheric”) amplitudes,

• the effects of and the sensitivity to the Dirac-type CP-violating phase δ,

• the dependence of the oscillation probabilities on the neutrino mass hierarchy.

We perform numerical calculations of oscillation probabilities and also develop a simple

analytic approach to interpretation of the obtained results based on lines of three types

in the neutrino energy – nadir angle plane. These are the solar and atmospheric “magic

lines”, i.e., the lines on which respectively the solar or atmospheric contributions to the

transition amplitude approximately vanish, and the interference phase lines. Construction

of these curves allows one to identify the regions in the experimental parameter space that

are most sensitive to the effects of non-vanishing phase δ. Our results can be useful for

planning experiments with atmospheric and accelerator neutrinos, as well as neutrinos of

cosmic origin.

In the present paper, as well as in [1], we confine our consideration to the study of the

oscillations probabilities. Accurate predictions for the event numbers and sensitivities of

future experiments can only be done when an information on the corresponding detection

efficiencies and systematic errors becomes available. Still, some general statements can be
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made and estimates done even in the absence of such an information; we plan to present

the corresponding analysis in a future publication.

Three-flavor effects in neutrino oscillations in the Earth have been considered in the

past [7, 42, 17, 46, 23, 34 – 41, 11, 43 – 45, 24, 47 – 55]. The main new results of the present

paper are the analysis of the neutrino oscillations in the Earth in terms of the aforemen-

tioned three sets of curves, and use of the neutrino oscillograms for a detailed study of the

domains of the parameter space that are most sensitive to the value of CP-violating phase

δ.

The paper is organized as follows. In section 2 we give general 3-flavor expressions

for the oscillation probabilities in matter. We present exact analytic results for matter

with constant density and introduce a factorization approximation. In section 3 present

the neutrino oscillograms for different oscillation channels and discuss the effects of non-

vanishing mixing and splitting in the 1-2 sector on these oscillograms. We consider features

of the oscillograms for the inverted mass hierarchy. Section 4 contains the discussion of

the effects of the CP-violating phase δ and their analysis in terms of the three sets of

special lines. In this section we also discuss the sensitivity of the oscillation probabilities

to the phase δ and its dependence on neutrino energy and nadir angle (baseline length).

Conclusions follow in section 5.

2. Three-flavor neutrino oscillations in matter

2.1 Evolution matrix and probabilities for symmetric profile

We consider mixing of the three flavor neutrinos, νf ≡ (νe, νµ, ντ )T . The mixing matrix

U , defined through νf = Uνm, where νm = (ν1, ν2, ν3)
T is the vector of neutrino mass

eigenstates, can be parametrized as

U = U23 Iδ U13 I−δ U12 . (2.1)

Here the matrices Uij = Uij(θij) describe rotations in the ij-planes by the angles θij, and

Iδ ≡ diag(1, 1, eiδ), where δ is the Dirac-type CP-violating phase.

Evolution of the system in matter is described by the equation

i
dνf

dt
=

(

UM2U †

2Eν
+ V̂

)

νf , (2.2)

where Eν is the neutrino energy and M2 ≡ diag(0,∆m2
21

,∆m2
31

) is the diagonal matrix of

neutrino mass squared differences with ∆m2
ji ≡ m2

j − m2
i . V̂ = diag(Ve, 0, 0) is the matrix

of matter-induced neutrino potentials with Ve ≡
√

2GF Ne, GF and Ne being the Fermi

constant and the electron number density, respectively. The evolution matrix S(t, t0) (the

matrix of oscillation amplitudes) defined through ν(t) = S(t, t0) ν(t0) satisfies the same

eq. (2.2) with the initial condition S(t0, t0) = l1.

It is convenient to consider the evolution of the neutrino system in the propagation

basis ν̃ = (νe, ν̃2, ν̃3)
T defined through the relation

νf = U23 Iδ ν̃ (2.3)
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with ν̃ = U13 I−δ U12 ν. According to eqs. (2.2) and (2.1), the Hamiltonian H̃ which

describes the evolution of the neutrino vector of state ν̃ is

H̃ =
1

2Eν
U13 U12 M2 U †

12
U †

13
+ V̂ . (2.4)

This Hamiltonian does not depend on the 2-3 mixing and the CP-violating phase. The

dependence on these parameters appears when one projects the initial flavor state on the

propagation basis and the final state back onto the original flavor basis. Explicitly, the

Hamiltonian H̃ reads

H̃ =
∆m2

31

2Eν







s2
13

+ s2
12

c2
13

r∆ + 2Ve Eν/∆m2
31

s12 c12 c13 r∆ s13 c13(1 − s2
12

r∆)

. . . c2
12

r∆ −s12 c12 s13 r∆

. . . . . . c2
13 + s2

12 s2
13 r∆






. (2.5)

Here r∆ ≡ ∆m2
21/∆m2

31, cij ≡ cos θij and sij ≡ sin θij. We introduce the evolution matrix

(the matrix of transition and survival amplitudes) in the basis (νe, ν̃2, ν̃3) as

S̃ =







Aee Ae2̃ Ae3̃

A
2̃e A

2̃2̃
A

2̃3̃

A
3̃e A

3̃2̃
A

3̃3̃






. (2.6)

This matrix satisfies the Schrödinger equation with the Hamiltonian H̃. Then, according

to eq. (2.3), the evolution matrix in the flavor basis S is

S = Ũ S̃ Ũ †, Ũ ≡ U23 Iδ. (2.7)

As follows immediately from the form of the Hamiltonian in eq. (2.5), the amplitudes have

the following hierarchy:

Ae2̃, A2̃e ∼ r∆, Ae3̃, A3̃e ∼ s13, A
3̃2̃

, A
2̃3̃

∼ s13r∆, (2.8)

i.e., A
2̃3̃

and A
3̃2̃

are the smallest amplitudes.

In terms of the propagation-basis amplitudes, according to eqs. (2.6) and (2.7) (see

also [43]), the matrix S is given by

S =







Aee c23Ae2̃ + s23e
−iδAe3̃ −s23Ae2̃ + c23e

−iδAe3̃

c23A2̃e + s23e
iδA

3̃e c2
23A2̃2̃

+ s2
23A3̃3̃

+ Kµµ −s23c23(A2̃2̃
− A

3̃3̃
) + Kµτ

−s23A2̃e + c23e
iδA

3̃e −s23c23(A2̃2̃
− A

3̃3̃
) + Kτµ s2

23A2̃2̃
+ c2

23A3̃3̃
+ Kττ






,

(2.9)

where
Kµµ ≡ s23c23(e

−iδA
2̃3̃

+ eiδA
3̃2̃

) ,

Kµτ ≡ c2
23e

−iδA
2̃3̃

− s2
23e

iδA
3̃2̃

,

Kτµ = Kµτ (δ → −δ, 2̃ ↔ 3̃) ,

Kττ = −Kµµ .

(2.10)

Notice that Kαβ (α, β = µ, τ) are proportional to the small amplitudes A
2̃3̃

and A
3̃2̃

.
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Since the Earth density profile is to a good approximation symmetric with respect to

the midpoint of the neutrino trajectory and there is no fundamental CP- (and T-) violation

in the propagation basis, the neutrino evolution is T-invariant in this basis, which yields [11]

A
2̃e = Ae2̃ , A

3̃e = Ae3̃ , A
3̃2̃

= A
2̃3̃

. (2.11)

Therefore for Kαβ we obtain

Kµτ = A
2̃3̃

(cos 2θ23 cos δ − i sin δ),

Kτµ = A
2̃3̃

(cos 2θ23 cos δ + i sin δ),

Kµµ = −Kττ = A
2̃3̃

sin 2θ23 cos δ .

(2.12)

Notice that the diagonal elements Sµµ and Sττ of the evolution matrix (2.9) depend on the

CP phase only via cos δ, whereas See does not depend on δ at all. The latter is a consequence

of our use of the standard parametrization (2.1) for the leptonic mixing matrix.

The oscillation probabilities are expressed through the matrix elements of S as

Pαβ ≡ P (να → νβ) = |Sβα|2 with α, β = e, µ, τ . (2.13)

From eqs. (2.13), (2.9), (2.11) and (2.12) one finds for the probabilities Pαβ

Pµe = c2
23|Ae2̃|2 + s2

23|Ae3̃|2 + 2 s23 c23 Re(e−iδA∗
e2̃

Ae3̃) , (2.14)

Pτe = s2
23|Ae2̃|2 + c2

23|Ae3̃|2 − 2 s23 c23 Re(e−iδA∗
e2̃

Ae3̃) , (2.15)

Pµµ = |c2
23A2̃2̃

+ s2
23A3̃3̃

+ 2 s23 c23 cos δA
2̃3̃
|2 , (2.16)

Pµτ = |s23 c23(A3̃3̃
− A

2̃2̃
) + (cos 2θ23 cos δ + i sin δ)A

2̃3̃
|2 . (2.17)

The probabilities Pβα are obtained from Pαβ through the substitution δ → −δ:1

Pβα = Pαβ(δ → −δ). (2.18)

All the results presented in this section are also valid for antineutrinos if one makes sub-

stitutions

δ → −δ, Aij → Āij , where Āij ≡ Aij(V → −V ). (2.19)

Notice that the amplitudes of transitions (2.14) and (2.15) that involve νe are given by

linear combinations of two propagation-basis amplitudes. The other amplitudes depend on

three propagation-basis amplitudes.

2.2 Eigenvalues

We will refer to parameters θ12 and ∆m2
21 as the 1-2 (or solar) sector, and to parameters θ13

and ∆m2
31 as the 1-3 (or atmospheric) sector. We use the same form of the mixing matrix in

1Note that in a matter with an asymmetric density profile one would also have to substitute V → Ṽ ,

where Ṽ is the reverse profile corresponding to the interchanged positions of the neutrino source and

detector [11]). This, in particular, means that one would have to distinguish Aij from Aji and Kβα from

Kαβ .

– 5 –
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matter as in vacuum, with substitution θij → θm
ij . The eigenvalues of the Hamiltonian Hm

i

are identified in such a way that Hm
i → ∆m2

i1/2Eν when V → 0. For densities (energies)

between the 1-2 and 1-3 MSW resonances we find for the normal mass hierarchy

Hm
1 ≈ ∆m2

21c
2
12

2Eν
, Hm

2 ≈ V , Hm
3 ≈ ∆m2

31

2Eν
. (2.20)

For high densities (energies) which are far above the 1-3 resonance we have

Hm
1 ≈ ∆m2

21
c2
12

2Eν
, Hm

2 ≈ ∆m2
31

c2
13

2Eν
, Hm

3 ≈ V . (2.21)

In a constant density medium the oscillation phases equal

2φm
ji = ∆Hji L with ∆Hji ≡ Hm

j − Hm
i . (2.22)

There are two independent frequencies in the problem, ∆H21 and ∆H32.

For antineutrinos there are no level crossings, and with the increase of density (energy)

the eigenvalues have the following asymptotic limits:

Hm
1 → V , Hm

2 → ∆m2
21

c2
12

2Eν
, Hm

3 → ∆m2
31

c2
13

2Eν
. (2.23)

We will discuss the level crossing scheme for the inverted hierarchy in section 3.7.

2.3 Amplitudes in medium of constant density

Oscillations in a matter of constant (but trajectory dependent) density layers give a good

approximation to the results of exact numerical calculations for neutrino oscillations in

the Earth. As we have shown in [1] they reproduce rather accurately all the features of

the oscillograms (at least for ∆m2
21 = 0). Thus, we can use the exact analytic results for

constant-density matter to clarify various features of the numerical results for the realistic

Earth density profile. This also allows one to obtain a parametric dependence of the prob-

abilities, in particular parametric smallness of certain contributions to the probabilities.

In what follows we present the results for one layer of constant density. We mark the

corresponding amplitudes and probabilities with the superscript “cst”.

The exact formula for the νµ → νe transition amplitude in matter of constant density

is

Scst
eµ = 2i eiφm

21

[

Um
e1Um∗

µ1 sin φm
21 − e−iφm

31Um
e3Um∗

µ3 sinφm
32

]

, (2.24)

where Um
αj and φm

ji are the elements of mixing matrix and the oscillation half-phases in

matter. Using the expressions for Um
ei and Um

µi in terms of the mixing angles in the standard

parametrization, we can rewrite eq. (2.24) as

Scst
eµ = cos θm

23A
cst

e2̃
+ sin θm

23e
−iδm

Acst

e3̃
, (2.25)

where

Acst

e2̃
≡ −i eiφm

21 cos θm
13 sin 2θm

12 sin φm
21 , (2.26)

Acst

e3̃
≡ −i eiφm

21 sin 2θm
13

[

sinφm
32 e−iφm

31 + cos2 θm
12 sinφm

21

]

. (2.27)

– 6 –
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Here φm
31 = φm

32 + φm
21. Since to a good approximation θm

23 ≈ θ23 and δm ≈ δ [56, 42],

the amplitudes Acst

e2̃
and Acst

e3̃
can be identified with Ae2̃ and Ae3̃ in eq. (2.14) and (2.15).

According to eq. (2.20), between the two MSW resonances φm
31

≈ ∆m2
32

L/4Eν . Above the

1-2 resonance sin2 θm
12 ≈ 1, so that the second term in (2.27) is very small:

cos2 θm
12 ≈ sin2 2θ12

4

(

∆m2
21

2V Eν

)2

=
1

4
tan2 2θ12

(

ER
12

Eν

)2

, (2.28)

which is suppressed as 1/V 2. Here ER
12 ≈ cos 2θ12∆m2

21/2V is the 1-2 resonance energy.

Consequently, up to the phase factor, the amplitude Ae3̃ is reduced to the 2ν form with

the parameters (θm
13

, φm
32

). Notice that above the 1-3 resonance φm
21

→ ∆m2
32

L/4Eν .

Similarly, for the νµ → νµ amplitude we obtain

Scst
µµ = 1 + 2i eiφm

21 |Um
µ1|2 sin φm

21 − 2i e−iφm
32 |Um

µ3|2 sin φm
32 . (2.29)

In terms of mixing angles,

Um
µ1 = −sm

12c
m
23 − cm

12s
m
13s

m
23e

iδm

, Um
µ3 = cm

13s
m
23 , (2.30)

and the amplitude can be rewritten as

Scst
µµ = cos2 θm

23A
cst

2̃2̃
+ sin2 θm

23A
cst

3̃3̃
+ sin 2θm

23 cos δmAcst

2̃3̃
, (2.31)

where

Acst

2̃2̃
≡ 1 + 2i eiφm

21 sin2 θm
12 sin φm

21 , (2.32)

Acst

3̃3̃
≡ 1 − 2i e−iφm

32 cos2 θm
13 sin φm

32 + 2i eiφm
21 sin2 θm

13 cos2 θm
12 sin φm

21 , (2.33)

Acst

2̃3̃
≡ i eiφm

21 sin θm
13 sin 2θm

12 sinφm
21 . (2.34)

Notice that Acst

2̃2̃
has exactly the form of the corresponding 2ν amplitude driven by the

solar parameters. The amplitude Acst

3̃3̃
also coincides to a very good approximation with

the corresponding 2ν amplitude driven by the atmospheric parameters. The contribution

of the solar mode to Acst

3̃3̃
is strongly suppressed by the factor sin2 θ13 in the region of

1-2 resonance and by cos2 θm
12 above this resonance. Up to the overall factor sin θm

13 the

amplitude Acst

2̃3̃
depends on the solar (1-2) phase only, and in general it contains double

smallness: sin θ13 and the one related to the solar mode of oscillations. Again in the

approximation θm
23 ≈ θ23 and δm ≈ δ the amplitudes (2.32), (2.33) and (2.34) can be

identified with the corresponding amplitudes in the propagation basis.

For completeness, we present also the expression for the νe → νe amplitude:

Scst
ee = 1 + 2i eiφm

21 cos2 θm
13 cos2 θm

12 sin φm
21 − 2i e−iφm

32 sin2 θm
13 sin φm

32. (2.35)

It can be rewritten in the form convenient for use at low energies:

Scst
ee = 1+2i eiφm

21 cos2 θm
12 sin φm

21−2i eiφm
21 sin2 θm

13

[

e−iφm
32 sin φm

31 + cos2 θm
12 sin φm

21

]

. (2.36)

In formulas for the amplitudes one can interchange the phases in the exponents and

sines using the following identity:

sinφm
32e

−iφm
31 = sin φm

31e
−iφm

32 − sin φm
21, (2.37)

where φm
31

= φm
32

+ φm
21

. Due to the level crossing phenomenon this phase interchange is

convenient for studies of oscillation effects in different energy ranges.

– 7 –
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2.4 The factorization approximation

The elements of the evolution matrix in the propagation basis S̃ depend in general on

∆m2
21, θ12, ∆m2

31 and θ13. As follows immediately from the form of the Hamiltonian H̃ in

eq. (2.5), in the limits ∆m2
21 → 0 or/and s12 → 0 the state ν̃2 decouples from the rest of

the system, and consequently, the amplitude Ae2̃ vanishes. In this limit, Ae3̃ (as well as

A
3̃3̃

and See) is reduced to a 2ν amplitude which depends on the parameters ∆m2
31

and

θ13. We denote the latter by AA:

AA(∆m2
31, θ13) ≡ Ae3̃(∆m2

21 = 0) . (2.38)

It is this amplitude that has been studied in our previous paper [1]; the corresponding

probability equals PA = |AA|2.
In the limit s13 → 0 the state ν̃3 decouples and the amplitude Ae3̃ vanishes. At the

same time, the amplitude Ae2̃ reduces to a 2ν amplitude depending on the parameters of

the 1-2 sector, ∆m2
21 and θ12. Denoting this amplitude by AS we have

AS(∆m2
21, θ12) ≡ Ae2̃(θ13 = 0) . (2.39)

We will also use the notation PS ≡ |AS |2.
This consideration implies that to the leading non-trivial order in the small parameters

s13 and r∆ the amplitudes Ae2̃ and A
2̃e below the 1-3 resonance depend only on the “solar”

parameters, whereas the amplitudes Ae3̃ and A
3̃e above the 1-2 resonance depend only on

the “atmospheric” parameters, i.e.:

Ae2̃ ≃ A
2̃e ≃ AS(∆m2

21, θ12) , Eν < ER
13 ,

Ae3̃ ≃ A
3̃e ≃ AA(∆m2

31, θ13) , Eν > ER
12 .

(2.40)

In what follows we will call the approximate equalities in eq. (2.40) the factorization ap-

proximation, since the dependence of the interference terms in the probabilities, A∗
2̃e

A
3̃e,

on solar and atmospheric parameters factorizes in this approximation.

An additional insight into the factorization approximation can be obtained from the re-

sults for constant-density matter obtained in the previous section. According to eqs. (2.26)

and (2.27), up to the phase factors one has

AA → Acst
A ≡ sin 2θm

13 sin φA, AS → Acst
S ≡ sin 2θm

12 sin φS , (2.41)

where

φS =
∆m2

21L

4Eν

√

(cos 2θ12 ∓ 2V Eν/∆m2
21

)2 + sin2 2θ12 , (2.42)

φA =
∆m2

31L

4Eν

√

(cos 2θ13 ∓ 2V Eν/∆m2
31

)2 + sin2 2θ13 . (2.43)

Here the upper (lower) sign corresponds to neutrinos (antineutrinos).

Due to the level crossing phenomenon the factorization approximation (2.40) is not

valid in the (Eν ,Θν) parameter space of the 1-3 resonance where 1-3 mixing is enhanced.

Indeed, using eqs. (2.20) and (2.21) we find that for the normal mass hierarchy

φm
32 ≈ φA for Eν ≫ ER

12 (2.44)
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and

φm
21 ≈ φS for Eν ≪ ER

13. (2.45)

However, the last formula is not correct in the energy region near the 1-3 resonance and

above it due to the 1-3 level crossing. In particular, from (2.21) we obtain for Eν ≫ ER
13

φm
21 ≈ L

4Eν

(

∆m2
31c

2
13 − ∆m2

21c
2
12

)

≈ ∆m2
31L

4Eν
≡ φ0

A , (2.46)

where φ0
A is the 1-3 vacuum phase. At the same time, φS ≈ φm

31
.

The results (2.26) and (2.27) allow us also to evaluate corrections to the factorization

approximation. As follows from eq. (2.26), beyond this approximation the amplitude Ae2̃

acquires an extra factor cm
13 and still depends on just one oscillation frequency, determined

by the solar mass splitting ∆m2
21. The factor cos θm

13 decreases with increasing neutrino

energy, approaching the value 1/
√

2 at the 1-3 MSW resonance and further decreasing to

cos θm
13

≃ 0 above this resonance. This leads to an additional suppression of the “solar”

amplitude Ae2̃ in matter at high energies, on top of the usual suppression due to the

quenching of the mixing in the 1-2 sector.

According to eq. (2.27) the exact expression for Acst

e3̃
differs from Acst

A by an additional

term depending on the 1-2 frequency. Above the 1-2 resonance we have cos2 θm
12

≪ 1, and

this additional term can be omitted:

Acst

e3̃
≈ −i eiφm

21

[

sin 2θm
13 sin φm

32e
−iφm

31

]

. (2.47)

Hence, up to a phase factor the amplitude Ae3̃ is also reduced to the standard two-neutrino

form and depends on a single oscillation phase φm
32. We can rewrite the amplitudes (2.26)

and (2.27) as

Acst

e2̃
= −i eiφm

21 cos θm
13A

cst
S (Eν ≪ ER

13) , (2.48)

Acst

e3̃
= −i eiφm

21

[

e−iφm
31Acst

A + cot2 θm
12 sin 2θm

13 Acst
S

]

, (ER
12 ≪ Eν ≪ ER

13) . (2.49)

In the general case of a matter of an arbitrary density profile, one can show, using

simple power counting arguments, that the corrections to the factorization approximation

for the amplitude Ae2̃ are of order s2
13, whereas the corrections to the “atmospheric” am-

plitude Ae3̃ are of order r∆ [50], in agreement with our consideration for constant density.

The amplitude Ae3̃ does not in general have a 2-flavor form, once the corrections to the

factorization approximation are taken into account.

3. Effects of 1-2 splitting and mixing

3.1 Neutrino oscillograms of the Earth

In this section we study the neutrino oscillograms of the Earth – contours of constant

oscillation probabilities in the plane of neutrino nadir angle and energy – in the complete 3ν

context (see figure 1). In our numerical calculations we take the matter density distribution

inside the Earth as given by the PREM model [57]. Unless otherwise specified, we assume
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the normal neutrino mass hierarchy and use the following numerical values of neutrino

parameters: ∆m2
31

= 2.5 · 10−3 eV2, ∆m2
21

= 8 · 10−5 eV2, tan θ12 = 0.45 [2, 58 – 60].

Recall that the distance L that neutrinos propagate inside the Earth is related to the

nadir angle of the neutrino trajectory Θν through

L = 2R⊕ cos Θν , (3.1)

where R⊕ = 6371 km is the Earth radius. The value Θν = 0 corresponds to vertically up-

going neutrinos which travel along the Earth’s diameter, whereas Θν = π/2 corresponds

to horizontal neutrino trajectories. For 0 ≤ Θν ≤ 33◦ neutrinos cross both the mantle

and the core of the Earth, whereas for larger values of the nadir angle they only cross the

Earth’s mantle. We call the corresponding parts of the oscillograms the core domain and

the mantle domain, respectively.

In the limit of vanishing ∆m2
21 the main features of the neutrino oscillations in the

Earth are determined by the MSW resonance enhancement of neutrino oscillations and

the parametric resonance enhancement in the core domain (see ref. [1] and figure 1). The

former leads to the appearance of the MSW resonance peaks: one in the mantle domain of

the oscillogram at neutrino energies Eν ∼ (6−7) GeV, and another one in the core domain

at Eν ∼ (2 − 3) GeV. The latter (parametric enhancement) produces three parametric

ridges in the core domain. In the notation of ref. [1] they are ridges A, B, C. Ridge A

spans the energy range from Eν ≈ 3 GeV at Θν = 0 to Eν ≈ 6 GeV at the mantle-core

border, where it merges with the mantle MSW resonance peak (see figure 1 middle and

right panels). Ridge B starts from Eν ≈ 5 GeV at Θν = 0 and becomes nearly vertical

for Θν = 33◦. The energy of the ridge C increases from Eν ≈ 10 GeV to high energies

when the nadir angle changes from Θν = 0 to Θν = 33◦. The location of the ridges weakly

depends on the 1-3 mixing angle. The ridges differ by the oscillation phase acquired in the

core [1].

3.2 Oscillograms due to 1-2 mixing

The oscillograms for θ13 = 0 are presented in the left panels of figure 1. In this limit,

according to eqs. (2.9) and (2.39),

1 − Pee = |Ae2̃|2 = PS . (3.2)

Thus, shown are the contours of constant probability PS .

In the 2ν case the oscillation probabilities depend on ∆m2 and neutrino energy Eν via

the ratio ∆m2/Eν . Therefore when oscillations are driven by the solar splitting, ∆m2
21,

the oscillation pattern is shifted to smaller energies as compared to that due to ∆m2
31

.

Moreover, the 1-2 pattern differs from the pattern for the 1-3 mixing due to the large value

of the 1-2 mixing. Indeed, as a consequence of the large 1-2 mixing the following new

features appear.

1. The oscillation length at the resonance is smaller than that for small mixing

lRm =
lν

sin 2θ12

∼ lν , (3.3)
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Figure 1: Neutrino oscillograms in the 3ν-mixing case. Shown are the contours of constant

probability 1−Pee (upper panels) and 1−Pēē (lower panels) for ∆m2
21 = 8×10−5 eV2, tan2 θ12 = 0.45

and different values of θ13.
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where lν is the vacuum oscillation length.

2. The resonance energy is shifted to smaller values not only due to ∆m2
21 ≪ ∆m2

31 but

also because of the factor cos 2θ12 ≈ 0.4:

ER
12 =

∆m2
21

2V̄
cos 2θ12 . (3.4)

Here V̄ is an effective (average) value of potential.

3. The degree of adiabaticity is better than for the 1-3 mixing case, and therefore the

oscillation probability in the mantle is determined by the potential near the surface

of the Earth, V̄ , averaged over the distance of the order of oscillation length.

4. The oscillation length in matter, lm = 2π/∆H21, monotonically increases with energy,

approaching in the limit Eν → ∞ the refraction length l0 ≡ 2π/V . Recall that for

small mixings lm first increases with energy, reaches a maximum slightly above the

resonance and then decreases.

5. The jump of the mixing angle at the mantle-core boundary is small. Therefore, a

sudden distortion of the oscillation patterns at Θν = 33◦ is not as significant as it is

for the small 1-3 mixing, especially below the 1-2 resonance energy.

These features allow one to understand the structure of the oscillograms. In the mantle

domain (Θν > 33◦) the oscillation pattern for neutrinos is determined by the resonance

enhancement of oscillations. There are three MSW resonance peaks above 0.1 GeV, which

differ from each other by the value of the total oscillation phase. The outer peak (Θν ≈ 82◦)

corresponds to φ ≈ π/2, the deeper one at Θν = 60◦, to φ ≈ 3π/2, and the inner one

(Θν ≈ 40◦), to φ = 5π/2. Recall that such a large phase can be acquired due to a smaller

resonance oscillation length (3.3) in comparison to the length in the 1-3 mixing case, in

which only one peak with φ = π/2 can be realized (see the upper parts of the panels in

figure 1). The resonance energy is given by eq. (3.4), and for the surface potential we find

ER
12 ≈ 0.12 GeV . (3.5)

The ratio of the 1-2 and 1-3 resonance energies equals

ER
12

ER
13

=

(

∆m2
21

∆m2
31

)(

cos 2θ12

cos 2θ13

)(

V̄13

V̄12

)

≈ 1

50
. (3.6)

Here V̄13/V̄12 ≈ 1.5 (see [1]), since for 1-3 oscillations we should take the average of potential

along the whole trajectory. The estimate (3.5) is valid for two outer peaks. For the peak

at Θν = 40◦, V̄ is larger, and accordingly, the resonance energy is slightly smaller.

The width of the 1-2 resonance is larger and therefore the regions of sizable oscillation

probability are more extended in the Eν direction as compared to the oscillations governed

by the 1-3 mixing and splitting.

The resonance energy in the core is ER
12

≈ 0.04 GeV. Therefore for Eν > (0.10 −
0.15) GeV the 1-2 mixing in the core is substantially suppressed by matter. Furthermore,
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Figure 2: Parametric resonance due to 1-2 mixing and splitting at the parametric peak at Θν =

25.1◦ and Eν = 0.2 GeV. Left panels: trajectory of the neutrino polarization vector in the flavor

space, and projections of this trajectory onto three planes. Right panel: dependence of PS (blue

line) and of the oscillation phase (red line) on the distance along the neutrino trajectory. The stars

along the blue line correspond to the beginning (1), the mantle-core boundary (2), the midpoint

(3), the core-mantle boundary (4), and the end of the trajectory (5).

at the energies above the resonance energy in the mantle (Eν > 0.12 GeV) the mixing in the

mantle is also suppressed. Therefore the peaks with Pmax ≈ 1 at Eν > 0.12 GeV should be

due to the interplay of the core and mantle effects. In particular, the peak at Eν ≃ 0.2 GeV

and Θν ≃ 25◦ is due to the parametric enhancement of the oscillations. It corresponds to

the realization of the parametric resonance condition when the oscillation half-phases equal

approximately φmantle ≈ π/2 and φcore ≈ 3π/2 (note that the total phase ≈ 5π/2, and this

parametric ridge is attached to the 5π/2 - MSW peak in the mantle domain). The spatial

evolution of neutrinos in this peak and its graphical representation are shown in figure 2.

In the left panel the blue lines present the trajectory of the neutrino polarization vector

in the flavor space. Recall that in terms of the elements of the 2 × 2 evolution S matrix,

S11, S12, S21 = −S∗
12 and S22 = S∗

11 (where the last two equalities are the consequences of

unitarity and hold in the basis where the effective Hamiltonian is traceless), the polarization

vector is defined in the flavor space as the vector with components sX = Re[S∗
11

S12],

sY = Im[S∗
11S12], sZ = |S11|2 − 1/2. Then the νe survival probability is given by Pee =

|S11|2 = sZ + 1/2 (see [1] for details).

The ridge at Eν ≃ (0.12 − 0.15) GeV and Θν ≃ 0 − 12◦ can also be considered as

being due to the parametric resonance with a larger core phase: φcore ≈ 5π/2. However,

for energies Eν ≤ 0.15 GeV the in-matter mixing is nearly maximal both in the mantle

and core, and the effect of the mantle-core density jump is small. As follows from figure 3

(left panel), the positions of the MSW peaks and maxima of the parametric ridges are
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Figure 3: Interpretation of the oscillograms due to the 1-2 mixing and mass splitting, for neutrinos

(left) and antineutrinos (right). Shown (in color) are contours of constant PS as well as lines of

various conditions that explain different structures of the oscillograms. The lines correspond to

collinearity condition (white), the generalized resonance condition (green), and the phase condition

(black).

determined very well by the intersections of the lines that correspond to the collinearity

condition and the phase condition as in the case of oscillograms due to the 1-3 mixing [1].

Recall that in terms of the elements of the evolution matrices in the mantle, Sm, and in

the core, Sc, these conditions read

Re[Sm
11S

c
11S

m
12] = 0 (collinearity), Re[(SmT ScSm)11] = 0 (phase). (3.7)

In figure 3 shown are also the lines of the generalized resonance condition for symmetric

density profile: Im[(ScSm)11] = 0 (see [1] for details). The elements of the evolution matrix

have been found by precise numerical computations. Apparently the ridges lie along the

lines of the collinearity condition.

There are also several intersections of the collinearity and the phase condition lines in

the core domain of the antineutrino oscillogram (right panel). This shows the existence of

the parametric enhancement in the antineutrino channel.

For Eν > 0.3 GeV the oscillation length practically does not depend on the neutrino

energy and is close to the refraction length, l0 = 2π/(
√

2GF Ne). Therefore the lines of
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equal phases become nearly vertical. According to figure 3, the lines of zero oscillatory

factor, φ = πk with k = 1, 2, 3, that determine the so called “solar” magic lines (see [61])

are at Θν ∼ 54◦ in the mantle and at ∼ 30◦ and 12◦ in the core domain. The oscillation

probabilities become smaller than 0.5% above 4 GeV in the whole range of the nadir angles.

At lower energies, Eν < 0.1 GeV, one finds a regular oscillatory pattern with ridges

and valleys. The distortion of this pattern at the core-mantle boundary is rather weak due

to the smallness of the difference between the mixing angles in the mantle and core.

In the 2ν context the oscillation probabilities depend on Eν/∆m2 and the mixing

angle. Therefore with the increase of the mixing angle the oscillatory pattern obtained for

the 1-3 mixing (upper parts of the oscillograms) should continuously transform into the

pattern due to the 1-2 mixing (apart from the trivial shift of energy). We find that with

increasing θ the parametric ridge A transforms first into the MSW peak in the mantle

(1-3 mixing) and then to the outer MSW peak of the 1-2 pattern. The parametric ridge

B transforms into the second MSW peak. The 1-3 core peak splits into two parts. One

part transforms into the third MSW peak of the 1-2 pattern in the mantle. The second

part merges with the parametric ridge C and appears as the parametric peak in the core

domain at Eν = 0.2 GeV at large mixings.

At high energies the patterns for neutrinos and antineutrinos are rather similar.

Turning on the non-zero 1-3 mixing leads to the appearance of an 1-3 oscillation pattern

at high energies and to the interference of the 1-2 and 1-3 oscillation modes. We will discuss

two types of the interference. The first one is the interference of modes characterized by the

solar and atmospheric frequencies. The corresponding interference terms in probabilities do

not necessarily depend on the CP-violating phase. The second type yields the interference

terms which depends on the CP-violating phase. We will call this the CP-interference.

In the following subsections we will consider the effects of the inclusion of the 1-2

mixing onto the 1-3 oscillatory pattern in different oscillation channels. We will compare

the probabilities computed in the three-flavor (3ν) context and in the two-flavor (2ν) limit

∆m2
21 → 0, θ12 → 0. The 2ν probabilities are computed as P (∆m2

31, sin
2 2θ13). That is,

we take a single mass splitting in the 2ν context to coincide with the largest mass splitting

in the 3ν case (the normal mass hierarchy). The oscillograms are computed for δ = 0.

3.3 νe − νe channel

In figure 1 (upper panels) we show the probability 1 − Pee for three different values of

sin2 2θ13: zero (left), small (middle) and relatively large (right). As follows from the figure,

in the first approximation the oscillograms for non-zero values of θ13 appear as superposition

of the 2ν oscillation patterns produced by the 1-2 and 1-3 mixings with small interference

effects. The smallness of the interference terms for this channel can be understood in the

following way. According to eq. (2.14), (2.15) and (2.18), the total probability of the νe

disappearance is

1 − Pee = Peµ + Peτ = Pe2̃ + Pe3̃. (3.8)

When the 1-2 splitting is neglected, this probability reduces to PA, studied in detail in [1].

Eq. (3.8) shows that for ∆m2
21

6= 0 the νe−ν
2̃

and νe−ν
3̃

transition probabilities simply add
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up in 1−Pee and no interference between the corresponding amplitudes (no CP-interference)

occurs. Correspondingly, the probability Pee does not depend on the CP-violating phase

in the standard parametrization. It does not depend on the 2-3 mixing either.

It follows from eqs. (2.26) and (2.27) that Pe2̃ is driven only by the “solar” frequency

(∝ ∆m2
21), at least in the constant-density approximation, whereas Pe3̃ depends both on the

“atmospheric” parameters (∆m2
31, θ13) and on the parameters of the 1-2 sector. Therefore

the interference of the solar and atmospheric modes originates from Pe3̃ ≡ |Ae3̃|2. The

interference of 1-2 and 1-3 oscillation modes can be quantified (at least for the mantle

region) using the expression (2.27) valid for constant density matter:

1−P cst
ee = cos2 θm

13(1+sin2 θm
13 cot2 θm

12)P
cst
S +P cst

A +cot θm
12 sin 2θm

13 cos φm
31 Acst

A Acst
S . (3.9)

Here Acst
A and Acst

S are the 2ν amplitudes defined in (2.41) (note that in terms of Acst
A

and Acst
S this expression is valid in the energy range between the two resonances. In the

other energy ranges one needs to take into account the level crossing phenomenon, which

changes the labeling of the phases). The last term in (3.9) is due to the interference of the

solar and atmospheric modes which comes from |Ae3̃|2. Apart from the product Acst
A Acst

S ,

this term contains additional small factors. In the region of the 1-2 resonance, θm
13 ≈ θ13,

cot θm
12 ∼ 1 and therefore the interference term is suppressed by a small factor sin 2θ13. In

fact, all corrections to the main contribution, PS , are of the order of the small probability

P cst
A ∼ sin2 θ13. In the region of the 1-3 resonance P cst

S is small, and the interference

term is suppressed by cot θm
12 ∼ r∆. Consequently, all the corrections to the dominant

term P cst
A are of the order of P cst

S . The interference term is further suppressed at the

energies between the two resonances. Indeed, we can rewrite this term approximately as
1

2
sin 2θm

12
sin 2θm

13
cos φm

31
Acst

A Acst
S . As we will see in section 4.5 for small θ13 the product

sin 2θm
12 sin 2θm

13 has a minimum between the two resonances. Thus, the strong suppression

of the effects of the 1-2 mixing in the νe − νe channel is due to the absence of the CP-

interference of the amplitudes Ae2̃ and Ae3̃.

To further illustrate the effects of the 1-2 mixing and mass splitting at high energies we

show in figure 4 the oscillograms for Pee in the full three-flavor framework (left panels) and

for the difference of probabilities with and without 1-2 mixing and splitting (right panels):

∆Pee ≡ Pee − P̊ee = Pee − Pee(∆m2
21 = 0). (3.10)

Recall that we compute the two-flavor probability P̊ee taking ∆m2 = ∆m2
31.

In general, there are two contributions to ∆Pee:

∆Pee ≈ ∆PS
ee + ∆PA

ee. (3.11)

which we will refer to as solar and atmospheric contributions. The solar contribution ∆PS
ee

is proportional to the solar amplitude, it includes term PS
ee and the interference of the

amplitudes with the solar and atmospheric frequencies in Pe3̃. The second contribution

in (3.11) follows from a change of the atmospheric mode: the phase and the amplitude of

oscillations due to non-zero 1-2 mass splitting and mixing:

∆PA
ee ≈ ∆PA ≡ PA − P̊A . (3.12)
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Figure 4: Oscillograms for the νe − νe channel. Shown are the contours of constant probability

Pee (left) as well as constant difference ∆Pee of 3ν and 2ν probabilities (right), for neutrinos

(upper panels) and antineutrinos (lower panels). The oscillation parameters for 3ν probabilities are

sin2 2θ13 = 0.05, ∆m2
21 = 8×10−5 eV2, tan2 θ12 = 0.45 and δ = 0. For the 2ν probabilities we used

∆m2 = ∆m2
31.

Let us estimate these contributions using the results obtained for a matter of constant

density. From eq. (3.9) we have

∆PS
ee ≈ cos2 θm

13 P cst
S + cos θm

12 sin 2θm
13 cos φm

31 Acst
A Acst

S , (3.13)

and, according to our consideration above, for high energies ∆PS
ee = O(P cst

S ) ≤ sin2 2θm
12,

which is below 0.002 in the 1-3 resonance region. For the atmospheric contribution we

obtain

∆PA ≈ sin2 2θ̊m
13 sin2 φ̊m

31 − sin2 2θm
13 sin2 φm

32 . (3.14)

Let us underline that due to the 1-2 level crossing, in the 3ν case the relevant atmospheric
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phase is φm
32 and not φm

31. In the lowest order

sin2 2θm
13 ≈ sin2 2θ̊m

13(V → V1), (3.15)

where

V1 ≈ V

1 − s2
12

r∆

. (3.16)

Then, using eqs. (3.15) and (3.16), we obtain

∆PA ≈ sin2 2θ̊m
13

[

∆φ sin 2φm
32 − 2

sin2 2θ̊m
13

sin2 2θ13

sin2 φm
32 (cos 2θ13 − x) xs2

12r∆

]

, (3.17)

where

x ≡ 2V Eν

∆m2
31

. (3.18)

The first term in the brackets is proportional to the phase shift

∆φ = φ̊m
31 − φm

32 ∼ ∆m2
21L

2Eν
, (3.19)

while the second one is due to the modification of the mixing angle. The doubly suppressed

corrections, ∼ ∆φr∆, are omitted. We find that for sin2 2θ13 = 0.05 both terms are of order

0.02−0.03 in the region of the 1-3 resonance (in some regions of the nadir angles the second

term can dominate).

The difference ∆PA can be rewritten as

∆PA ≈ 2Acst
A sin 2θ̊m

13

[

cos φm
32 ∆φ − sin2 2θ̊m

13

sin2 2θ13

sinφm
32 (cos 2θ13 − x)xs2

12r∆

]

, (3.20)

so that its proportionality to Acst
A becomes manifest. Consequently, ∆PA vanishes along

the atmospheric magic lines, Acst
A = 0 [61] (see section 4.2 for details).

Thus, for the νe−νe channel, ∆PA
ee dominates over ∆PS

ee at high energies and therefore

it describes the structure of the oscillograms for the probability differences. In particular,

this explains the fact that oscillograms for ∆Pee repeat the structure of Pee with certain

shift in energy. Partly the difference ∆Pee can be eliminated by modifying the 2ν value

of ∆m2
31, taking ∆m2 6= ∆m2

31. In certain energy range the phase shift effect can be

eliminated. Notice also that ∆PA
ee is not proportional to AS or even to the corresponding

oscillatory factor.

With the decrease of neutrino energy, the effect of the 1-2 mixing increases. Since

∆PA ∝ E−1
ν and ∆PS ∝ E−2

ν , at lower energies the effect of the solar contribution becomes

important. The interference effects of different modes are suppressed in Pee, therefore the

order of magnitude of the contributions to 1 − Pee due to nonzero 1-2 splitting can be

readily estimated from the upper left panel of figure 1.

The oscillograms for the antineutrino channel ν̄e → ν̄e are shown in the lower panels of

figures 1 and 4. Now apart from the change of the sign of δ one needs to take into account

the change of the mixing and of the level crossing scheme. According to (2.23), the phases
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become φA ≃ φm
31 and φS ≃ φm

21. Therefore, the relevant oscillation phase in Acst

e3̃
is φm

31,

and the amplitude (2.27) can be rewritten for antineutrinos as

Ācst

e3̃
= ieiφm

21 sin 2θm
13[sin φm

31e
−iφm

32 − sin2 θm
12 sin φm

21] , (3.21)

where we used the phase exchange relation (2.37). At high energies sin2 θm
12 ≪ 1, and

the second term in (3.21) is very small. For the normal mass hierarchy both 1-2 and 1-3

mixings monotonically decrease with energy. The effect the of inclusion of the 1-2 mixing

and splitting is illustrated in the lower panels of figure 4. Since for the antineutrino channel,

in the absence of level crossing, the phase φm
31

is relevant, the difference φ̊m
31
−φm

31
is smaller

than the corresponding difference in the neutrino channel. Thus, both ∆PA and the total

difference of the probabilities turn out to be smaller than they are in the neutrino channel.

Furthermore, the solar contribution plays an important role now, determining the vertical

structure of the oscillogram.

3.4 νe − νµ and νe − ντ channels

The transition probability Pµe ≡ P (νµ → νe) (see (2.14)) can be rewritten as

Pµe = c2
23|Ae2̃|2 + s2

23|Ae3̃|2 + sin 2θ23|A∗
e2̃

Ae3̃| cos(φ − δ) , (3.22)

where

φ ≡ arg(A∗
e2̃

Ae3̃) . (3.23)

Unlike 1− Pee, this probability contains the interference term between Ae2̃ and Ae3̃ which

depends on the CP-violation phase. Furthermore, this interference term is not suppressed

by additional small factors as it happens in the νe − νe channel. From the unitarity of the

matrix S̃ in eq. (2.6) we obtain for the product of amplitudes in the interference term

A∗
e2̃

Ae3̃ = −A∗
3̃2̃

A
3̃3̃

− A
2̃3̃

A∗
2̃2̃

, (3.24)

i.e., A∗
e2̃

A
3̃e is proportional to the small amplitudes A

2̃3̃
and A

3̃2̃
.

Since the amplitude Ae2̃ is suppressed at high energies due to the smallness of the 1-2

mixing in matter, in the lowest approximation we have

Pµe ≈ sin2 θ23|Ae3̃|2 ≈ sin2 θ23|AA|2. (3.25)

The maximal value of the probability Pµe ≃ s2
23 ≃ 0.5.

In the constant density approximation (valid for the mantle domain), using the ampli-

tudes (2.27) we find at high energies

P cst
µe = s2

23P
cst
A + sin 2θ23 cos θm

13A
cst
A Acst

S cos(φm
31 + δ) + O(P cst

S ). (3.26)

Comparing this expression with (3.22) we find that for energies between the two resonances

the interference phase satisfies

φ ≈ −φm
31 . (3.27)

The precise expression for the phase in the constant density approximation can be obtained

from φ ≡ arg(Acst

e2̃

∗
Acst

e3̃
) = arg(Acst

e3̃
).
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Figure 5: Oscillograms for the νµ − νe channel. Shown are the contours of constant probability

Pµe (left) as well as constant difference ∆Pµe of 3ν and 2ν probabilities (right), for neutrinos

(upper panels) and antineutrinos (lower panels). The oscillation parameters for 3ν probabilities are

sin2 2θ13 = 0.05, ∆m2
21 = 8×10−5 eV2, tan2 θ12 = 0.45 and δ = 0. For the 2ν probabilities we used

∆m2 = ∆m2
31. In the right panels we also show the solar magic lines (black) and the lines which

correspond to the condition (3.32).

Figure 5 illustrates the effect of inclusion of the 1-2 mixing and mass splitting on the

νµ − νe and ν̄µ − ν̄e oscillation patterns for Eν ≥ 1 GeV. The left panels correspond to the

3ν case, whereas the right ones show the oscillograms for the difference of probabilities

∆Pµe ≡ Pµe − Pµe(∆m2
21 = 0) (3.28)

and, similarly, for Pµ̄ē and ∆Pµ̄ē. As in the νe−νe case, this difference has two contributions:

∆Pµe ≈ ∆PS
µe + ∆PA

µe . (3.29)

The solar amplitude contribution ∆PS
µe is now dominated by the interference term and

turns out to be much larger than in the νe − νe case. The atmospheric contribution is
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determined by the same ∆PA = PA − P̊A as before, eqs. (3.17) and (3.20), with the

additional factor s2
23

≈ 0.5:

∆Pµe ≈ s2
23∆PA + sin 2θ23 cos θm

13A
cst
A Acst

S cos(φm
31 + δ) . (3.30)

Now in the 1-3 resonance region, the interference is ≤ 0.03 − 0.04, whereas the at-

mospheric one ≤ 0.015. Therefore, in the first approximation it is ∆PS
µe that determines

the structure of oscillograms for ∆Pµe, whereas ∆PA
µe leads to some corrections to this

structure.

Using the factorization approximation we can write the solar contribution as

∆PS
µe ≈ cos θ23|AS | (2 sin θ23|AA| cos(φm

31 + δ) + cos θ23|AS |) . (3.31)

This formula corresponds to the one in eq. (3.22) and is valid for the energies below the

energy of the 1-3 resonance. In the right panel of figure 5 we show the lines of vanishing

solar correction: ∆PS
µe = 0. This equality is satisfied where either |AS | = 0 (the solar

magic lines), or

2 sin θ23|AA| cos(φm
31 + δ) + cos θ23|AS | = 0 (3.32)

(white lines). If the second term is neglected the equality (3.32) splits into two conditions:

AA = 0 (the atmospheric magic line, see section 4.2) and cos(φm
31 + δ) = 0 (the interference

phase condition line). These lines form a grid which we will discuss in detail in section 4.

This grid describes rather well the domain structure of the oscillograms. Some deviations

of the actual domain borders from the grid are related to the corrections from ∆PA.

Representing ∆PA in (3.17) as ∆PA = Acst
A K, we can rewrite ∆Pµe in the constant density

approximation in the following form (up to corrections O(PS)):

∆Pµe ≈ Acst
A

[

s2
23K + sin 2θ23 cos θm

13A
cst
S cos(φm

31 + δ)
]

. (3.33)

Thus, with the atmospheric term taken into account, the lines Acst
A = 0 still determine zeros

of the difference ∆Pµe. However, the other lines of the condition ∆Pµe = 0 are shifted by

the term s2
23

K with respect to the solar magic and the interference phase lines.

Notice that the corrections to the 2ν oscillograms are enhanced in the 1-3 resonance

region, especially in the core domain at 3−4 GeV, where AA is large due to the parametric

resonance. Below 2 GeV the corrections increase with decreasing energy because ∆PS
µe ∝

PS ∝ 1/Eν and ∆PA
µe ∝ 1/Eν .

One qualitatively new feature of the oscillograms with ∆m2
21 6= 0 is that the absolute

minima of Pµe appear there as isolated points (see figure 5). In contrast, in the limit

∆m2
21

= 0 the absolute minima of Pµe (and Pµ̄ē) never appear as isolated points in the

oscillograms, but always form continuous curves (valleys of zero probability). This is unlike

for the absolute maxima, such as the MSW mantle peak or the parametric resonance peak

in the core region, where even in the limit of zero 1-2 splitting the value PA = 1 (i.e.,

Pµe = s2
23PA = s2

23) is reached only at a few isolated points. This feature is a consequence

of the symmetry of the matter density profile of the Earth, and can be readily understood

in the following way.
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The condition for the absolute minimum of the transition probability, Pµe = 0, or

Seµ = 0, where S is the evolution matrix, can be written as

Re(Seµ) = 0 , Im(Seµ) = 0 , (3.34)

and for a generic profile the absolute minima of Pµe are found as the points where the curves

corresponding to the two conditions in (3.34) intersect. However, due to the symmetry

of the Earth’s matter density profile, in the 2-flavor approximation (∆m2
21

= 0) in the

basis where the effective 2-flavor Hamiltonian of the system is traceless the transition

amplitude is pure imaginary [11]. This means that the condition Re[Seµ] = 0 is satisfied

automatically for all values of Eν and Θν . Therefore, the zeros of Pµe simply coincide with

the contour curves Im[Seµ] = 0. For ∆m2
21 6= 0 this is no longer the case, because the

2-flavor approximation does not apply.

For antineutrinos (lower panels of figure 5) the corrections are again determined by

the interference term with somewhat smaller atmospheric contribution. Therefore, one can

see a domain structure with vertical lines. With the decrease of energy the maxima of

the corrections inside the domains monotonically increase, since so do both the solar and

atmospheric amplitudes. Notice also that for δ = 0 the positive corrections are larger than

negative; the situation in the neutrino channel is opposite.

As we pointed out in section 2, for the inverse channel one has Peµ = Pµe(δ → −δ),

where it has been taken into account that the Earth density profile is symmetric.

According to eqs. (2.14) and (2.15) the oscillation probabilities Pτe and Peτ can be

obtained from the corresponding probabilities Pµe and Peµ through the substitution s23 →
c23, c23 → −s23 [47]. The interference term has the opposite signs for channels including

ντ as compared with those with νµ, which can be obtained from the unitarity condition

Pee + Pµe + Pτe = 1 and the fact that Pee does not depend on δ.

3.5 νµ − νµ and ντ − ντ channels

The νµ survival probability, Pµµ, for symmetric density profiles is given in eq. (2.16). It

can be rewritten as

Pµµ = |c2
23A2̃2̃

+ s2
23A3̃3̃

|2

+ 2 sin 2θ23 cos δ Re
[

A∗
2̃3̃

(c2
23A2̃2̃

+ s2
23A3̃3̃

)
]

+ sin2 2θ23 cos2 δ|A
2̃3̃
|2 . (3.35)

Note that Pµµ is an even function of δ. Since A
2̃3̃

= O(r∆s13) is a small quantity, one can

to a very good approximation neglect the term ∼ cos2 δ in eq. (2.16), which is proportional

to |A
2̃3̃
|2. The term ∼ cos2 δ can only become important when the main terms in Pµµ

are small; however, this happens only in very small regions of the experimental parameter

space.

In the limit ∆m2
21

→ 0 we have A
2̃2̃

= 1, A
2̃3̃

= 0. Then, parametrizing the 33-

amplitude as

A
3̃3̃

≡ |A
3̃3̃
|e−i2φm

3̃3̃ =
√

1 − PAe−i2φm
3̃3̃ (3.36)

we obtain from (3.35)

Pµµ(∆m2
21 = 0) = 1− sin2 2θ23 sin2 φm

3̃3̃
− s2

23PA − sin2 2θ23 cos 2φm
3̃3̃

(1−
√

1 − PA) . (3.37)
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If in addition θ13 = 0, then PA = 0 and Pµµ(∆m2
21 = 0) is reduced to the standard 2ν

vacuum oscillation probability with φm
3̃3̃

= φ0
A.

It is easy to estimate the effect of the 1-2 mixing in the limit θ13 = 0. In this case the

eigenstate ν̃3 decouples in the propagation basis, A
2̃3̃

= 0, and the probability takes a very

simple form

Pµµ = |c2
23A2̃2̃

+ s2
23A3̃3̃

|2. (3.38)

Now

A
3̃3̃

= e−i2φ0
3̃3̃ , φ0

3̃3̃
=

∆m2
31

L

4Eν
, (3.39)

and parametrizing A
2̃2̃

as

A
2̃2̃

= |A
2̃2̃
|e−i2φm

2̃2̃ =
√

1 − PSe−i2φm
2̃2̃ , (3.40)

we obtain

Pµµ = 1 − sin2 2θ23 sin2(φ0

3̃3̃
− φm

2̃2̃
) − c4

23PS − 1

2
sin2 2θ23 cos 2(φ0

3̃3̃
− φm

2̃2̃
)
(

1 −
√

1 − PS

)

.

(3.41)

At high energies, PS ≪ 1, and consequently eq. (3.41) becomes

Pµµ = P 2ν
µµ − PSc2

23[c
2
23 + s2

23 cos 2(φ0

3̃3̃
− φm

2̃2̃
)] , (3.42)

where P 2ν
µµ ≡ 1−sin2 2θ23 sin2(φm

3̃3̃
−φm

2̃2̃
). In the constant density approximation and above

the 1-2 resonance we have from (2.32) φm
2̃2̃

= φm
21, and therefore φm

3̃3̃
− φm

2̃2̃
= φm

32. Thus,

the effect of the 1-2 mixing is reduced to a shift of the oscillation phase and small additive

correction of order PS . Larger corrections are expected for non-zero 1-3 mixing due to the

interference of the 1-2 and 1-3 modes.

In figure 6 we show the oscillograms for Pµµ and Pµ̄µ̄ (left upper and lower panels)

and the differences ∆Pµµ ≡ Pµµ − Pµµ(∆m2
21 = 0) and ∆Pµ̄µ̄ ≡ Pµ̄µ̄ − Pµ̄µ̄(∆m2

21 = 0)

(right panels). One can see in this figure the regular oscillatory pattern dominated by the

vacuum νµ → ντ oscillations with certain distortion in the region of 1-3 the resonances: the

MSW resonance in the mantle and core and the parametric ridges in the core domain. The

dominant effect of the 1-2 mixing is related to the phase shift of this main mode, which

increases with decreasing energy: at low energies the corrections become of order 1. ∆Pµµ

follows to a large extend the structure of Pµµ. No domain structure appears here. All these

features can be seen from the formulas (3.35), (3.37). In particular, according to (3.41),

for zero 1-3 mixing we obtain

∆Pµµ = sin2 2θ23

[

sin2(φ0

3̃3̃
− φm

2̃2̃
) − sin2 φ0

3̃3̃

]

+ O(PS) . (3.43)

An additional insight can be gained using the constant density approximation. Let

us consider the case of maximal 2-3 mixing for which the figures have been plotted. For

maximal mixing and zero phase δ the interference term in the νµ−νµ channel coincides, up

to the sign, with the one in the νµ − νe channel (see section 4), which has been estimated
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Figure 6: Oscillograms for the νµ − νµ channel. Shown are the contours of constant probability

Pµµ (left) as well as constant difference ∆Pµµ of 3ν and 2ν probabilities (right), for neutrinos

(upper panels) and antineutrinos (lower panels). The oscillation parameters for 3ν probabilities are

sin2 2θ13 = 0.05, ∆m2
21 = 8×10−5 eV2, tan2 θ12 = 0.45 and δ = 0. For the 2ν probabilities we used

∆m2 = ∆m2
31.

in the previous subsection. Therefore, let us now consider the first term in (3.35). In the

limit ∆m2
21 → 0 we obtain for this term a very simple expression:

Pµµ(∆m2
21 = 0) = 1 − (1 − sin4 θm

13) sin2 φ̊m
32 . (3.44)

Here the phase φ̊m
32

should be calculated in the 2ν context with Hm
2

= 0.

The survival probabilities Pττ and Pτ̄ τ̄ can be obtained from the corresponding prob-

abilities Pµµ and Pµ̄µ̄ through the substitution s23 → c23, c23 → −s23 [47].

3.6 νµ − ντ channel

The probability of νµ → ντ oscillations for symmetric matter density profiles is given
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in (2.17). It can be rewritten as

Pµτ =
1

4
sin2 2θ23|A2̃2̃

− A
3̃3̃
|2 + sin 2θ23 cos 2θ23 cos δ Re

[

(A∗
3̃3̃

− A∗
2̃2̃

)A
2̃3̃

]

− sin 2θ23 sin δ Im
[

A∗
e2̃

Ae3̃

]

+ (1 − sin2 2θ23 cos2 δ)|A
2̃3̃
|2 . (3.45)

The oscillations are mainly driven by ∆m2
31 and the large mixing angle θ23. The amplitude

depends on δ through the terms proportional to cos δ and sin δ, and therefore Pµτ contains

both CP- and T-even and odd terms. Due to unitarity, all the information on νµ → ντ

oscillations is contained in the already discussed probabilities Pµµ and Pµe: Pµτ = 1−Pµµ−
Pµe. Furthermore, one can show that the δ-dependent interference terms proportional to

sin δ and cos δ satisfy the following relation

P δ
µτ = −P δ

µe − P δ
µµ (3.46)

(see the next section for details).

Notice that for the maximal 2-3 mixing and δ = 0, the probability takes a very simple

form

Pµτ =
1

4
|A

2̃2̃
− A

3̃3̃
|2 . (3.47)

In the limit ∆m2
21

→ 0 we obtain

Pµτ (∆m2
21 = 0) =

1

4
|1 − A

3̃3̃
|2 =

1

4

(

2 − PA − 2
√

1 − PA cos 2φm
3̃3̃

)

, (3.48)

where φm
3̃3̃

was defined in (3.36). For small PA the probability becomes

Pµτ (∆m2
21 = 0) =

(

1 − 1

2
PA

)

sin2 φm
32 , (3.49)

which in turn reduces to the standard 2ν probability for θ13 = 0.

The oscillograms for the νµ−ντ channel are very similar to those for the νµ−νµ channel

plotted in figure 6. To a large extent they are complementary in the sense that the corre-

sponding minima and maxima are interchanged. The Pµτ oscillograms exhibit the vacuum

oscillations pattern everywhere apart from the region Eν ≃ 3− 12 GeV. In this region the

pattern is distorted by the 1-3 level crossing, as well as by the parametric enhancement of

the oscillations in the 1-3 mode. This distortion is absent in the antineutrino channel. As

in the νµ − νµ case, the difference of the probabilities, ∆Pµτ , is dominated by the phase

shift, and the corrections have the opposite sign compared to ∆Pµµ.

Let us now present some results for constant density matter which will allow us to quan-

tify the features described above. Using the expressions for the amplitudes in eqs. (2.32)

and (2.33), we find from eq. (3.45) for Eν ≫ ER
12 (the maximal 2-3 mixing and δ = 0)

P cst
µτ =

∣

∣

∣
e−iφm

31 cos2 θm
13 sin φm

32 +
[

1 − cos2 θm
12(1 + sin2 θm

13)
]

sin φm
21

∣

∣

∣

2

≈
∣

∣

∣e−iφm
31 cos2 θm

13 sin φm
32 + sin φm

21

∣

∣

∣

2

.

(3.50)
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For energies above the 1-3 resonance one, cos2 θm
13 → 0 and eq. (3.50) gives Pµτ ≈ sin2 φm

21

with φm
21

≈ ∆m2
31

L/2Eν . Therefore the corrections to Pµτ due to the vacuum 1-2 mixing

and splitting are strongly suppressed. For energies between the two resonances, using the

phase exchange relation (2.37), we obtain

P cst
µτ ≈ cos4 θm

13 sin2 φm
31 +

1

2
sin2 2θm

13 sin φm
21 sin φm

31 cos φm
32 + sin4 θm

13 sin2 φm
21 . (3.51)

For ∆m2
21 = 0 we have

P cst
µτ (∆m2

21 = 0) ≈ cos4 θm
13 sin2 φm

32

− 1

2
sin2 2θm

13 sin φm
21 sin φm

31 cos φm
32 + sin4 θm

13 sin2 φm
21 , (3.52)

where the mixing angle θm
13 and the phases should be calculated in the 2ν context. From

the level crossing scheme for the normal mass hierarchy we obtain for energies below the

1-3 resonance one that φ̊m
21

≈ −φm
21

and φ̊m
32

≈ φm
31

, and the difference between the 2ν and

3ν phases is proportional to ∆m2
21L/2Eν . This difference increases with decreasing energy

and at Eν ∼ 1 GeV it can be of order π/2.

3.7 Inverted mass hierarchy

Let us briefly comment on the features of the oscillograms for the inverted mass hierarchy,

i.e., for ∆m2
31 < 0. The main change as compared to the normal hierarchy is due to the

1-3 resonance structure which appears in the antineutrino channel now. Pulling out of the

brackets in the Hamiltonian (2.5) the positive factor |∆m2
31
|, we have to change the sign in

front of all the terms without r∆ and V in the matrix (2.5). The general oscillation formulas

we presented before are valid in this case, however the eigenvalues of the Hamiltonian and

mixing angles in matter should be changed. The level crossing scheme is also modified. In

the neutrino channel (where there is the 1-2 resonance only), in the limit of large energies

we have

Hm
1 ≈ ∆m2

21
c2
12

2Eν
, Hm

2 ≈ V , Hm
3 ≈ ∆m2

31

2Eν
. (3.53)

In the antineutrino channel, below the 1-3 resonance the eigenvalues are

Hm
1 ≈ V , Hm

2 ≈ ∆m2
21

c2
12

2Eν
, Hm

3 ≈ ∆m2
31

c2
13

2Eν
, (3.54)

while above the 1-3 resonance,

Hm
1 ≈ ∆m2

31c
2
13

2Eν
, Hm

2 ≈ ∆m2
21c

2
12

2Eν
, Hm

3 ≈ V . (3.55)

Here for illustration we will consider the oscillograms for the νµ−νe channel only. The

other channels can be analyzed in a similar way. In figure 7 we show the oscillograms for

Pµe (left panels), and for the difference of 3ν and 2ν probabilities, ∆Pµe (right panels).

In the approximation of ∆m2
21 = 0 the neutrino oscillograms for the inverted hierarchy

coincide with the antineutrino oscillograms for the normal hierarchy, and vice-versa, pro-

vided that ∆m2
31

are taken to be the same in both cases. The inclusion of the 1-2 mixing
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Figure 7: Oscillograms for the νµ − νe channel in the case of the inverted mass hierarchy. Shown

are the contours of constant probability Pµe (left) as well as constant difference ∆Pµe of 3ν and 2ν

probabilities (right), for neutrinos (upper panels) and antineutrinos (lower panels). The oscillation

parameters for 3ν probabilities are sin2 2θ13 = 0.05, ∆m2
21 = 8 × 10−5 eV2, tan2 θ12 = 0.45 and

δ = 0. For the 2ν probabilities we used ∆m2 = ∆m2
31.

and mass splitting breaks this symmetry. However, at high energies where the corrections

are small, the correspondence “ν inverted ↔ ν̄ normal”, “ν̄ inverted ↔ ν normal” approx-

imately holds. In our computations in the limit ∆m2
21

→ 0 we have taken the remaining

mass squared difference to be equal to the largest splitting in the 3ν context, ∆m2 = ∆m2
32.

In the neutrino channel now there is only the 1-2 resonance and the height of the

oscillation peaks of the probability increases with decreasing energy. The difference of 3ν

and 2ν probabilities is mainly due to the interference terms, as in the normal mass hierarchy

case. This explains why one can clearly see a domain structure with vertical lines. The

solar magic lines are shifted due to the contribution from ∆PA. At high energies negative

corrections are larger in the absolute value than the positive ones (for δ = 0). Notice also

that the shape of domains for neutrinos in the case of inverted hierarchy is similar to that
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for antineutrinos in the normal mass hierarchy case.

In the antineutrino channel the oscillation pattern is dominated by the MSW and

parametric resonances. The difference of probabilities in the 3ν and 2ν contexts is again

due to the interference term ∝ ASAA, with some corrections from ∆PA. According to the

figure, the 1-2 mixing and splitting effect is enhanced in the regions of the MSW resonance

peaks and along the parametric ridges, since AA is enhanced there. The oscillogram ∆Pµe

has a domain structure. The heights of the peaks are maximal in the resonance regions.

In the mantle domain the heights reach minimum at Eν ∼ 3 GeV and in the core domain

at Eν ∼ 2 GeV, similarly to what we had for the CP-sensitivity peaks (section 4). Due to

the interplay of the interference terms and ∆PA, for δ = 0 the corrections in the case of

the inverted mass hierarchy are larger than those in the normal mass hierarchy case: e.g.,

in the region of the 1-3 resonance we have ∆Pµe ∼ ±(0.07 − 0.10). Below 3 − 4 GeV the

positive corrections dominate.

One can use the analytic formulas of section 3 with appropriately changed phases and

mixing angles to describe these results quantitatively.

4. Effects of CP-violating phase δ

In this section we consider in detail the properties of the CP-interference terms and in

particular their dependence on the phase δ in different channels. As can be seen from

the expressions given in section 2, the survival probability Pee does not depend on the

CP-violating phase δ, both for oscillations in vacuum and in matter [34, 38]. This is a

consequence of the facts that (i) δ is rotated away by transforming to the propagation

basis, and (ii) the probability Pee is not affected by this transformation. Note that for

oscillations in vacuum or in matter with symmetric density profiles, the other two survival

probabilities, Pµµ and Pττ , depend on δ only through the terms proportional to cos δ

and cos 2δ [43] since they are T-even quantities. In contrast to this, for oscillations in a

matter whose density profile is not symmetric with respect to the midpoint of the neutrino

trajectory, these probabilities acquire also terms proportional to sin δ and sin 2δ.

4.1 Interference and CP-violation

The unitarity of the evolution matrix in the propagation basis (2.6) for symmetric density

profiles gives

A
2̃3̃

A∗
2̃2̃

+ A∗
2̃3̃

A
3̃3̃

= −A∗
e2̃

Ae3̃ . (4.1)

This relation allows one to write explicitly the δ-dependent terms for different oscillation

channels as

P δ
µe = sin 2θ23

{

cos δ Re[A∗
e2̃

Ae3̃] + sin δ Im[A∗
e2̃

Ae3̃]
}

, (4.2)

P δ
µµ = sin 2θ23 cos δ

{

−Re[A∗
e2̃

Ae3̃] − cos 2θ23 Re[A∗
2̃3̃

(A
3̃3̃

− A
2̃2̃

)]
}

, (4.3)

P δ
µτ = sin 2θ23

{

− sin δ Im[A∗
e2̃

Ae3̃] + cos δ cos 2θ23 Re[A∗
2̃3̃

(A
3̃3̃

− A
2̃2̃

)]
}

. (4.4)
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Here in P δ
µµ and P δ

µτ we have omitted small terms proportional to |A
2̃3̃
|2. The sum of these

interference terms is zero. For maximal 2-3 mixing eqs. (4.2), (4.3) and (4.4) reduce to

P δ
µe = cos δ Re[A∗

e2̃
Ae3̃] + sin δ Im[A∗

e2̃
Ae3̃] , (4.5)

P δ
µµ = − cos δ Re[A∗

e2̃
Ae3̃] , (4.6)

P δ
µτ = − sin δ Im[A∗

e2̃
Ae3̃] . (4.7)

The following consequences of these expressions can be useful for measurements of δ: if

δ = 0, the probability Pµτ does not contain the interference term and P δ
µµ = −P δ

µe; if

δ = π/2, Pµµ has no interference term and P δ
µτ = −P δ

µe.

Using the phase φ ≡ arg(A∗
e2̃

Ae3̃) defined in eq. (3.23) we obtain in the general case

P δ
µe = sin 2θ23 cos(φ − δ) |Ae2̃Ae3̃| , (4.8)

P δ
µµ = − sin 2θ23 cos δ cos φ |Ae2̃Ae3̃| − D23 , (4.9)

P δ
µτ = − sin 2θ23 sin δ sin φ |Ae2̃Ae3̃| + D23 , (4.10)

where

D23 ≡ 1

2
sin 4θ23 cos δ Re

[

A∗
2̃3̃

(A
3̃3̃

− A
2̃2̃

)
]

(4.11)

is proportional to the deviation of the 2-3 mixing from the maximal one. Notice that D23

enters into P δ
µµ and P δ

µτ with opposite signs while P δ
µe does not depend on D23 at all. D23

is CP-even. It can be estimated using the constant density approximation as

Dcst
23 ≈ −1

2
sin 4θ23 cos δ

[

cos φm
31c

m
13A

cst
A Acst

S − 2 sin θm
13 sin φm

21A
cst
S

]

. (4.12)

This expression shows that corrections to the term proportional to Acst
A Acst

S in D23 are in

general not small.

For maximal 2-3 mixing one has

P δ
µe = cos(φ − δ) |Ae2̃Ae3̃| , (4.13)

P δ
µµ = − cos δ cos φ |Ae2̃Ae3̃| , (4.14)

P δ
µτ = − sin δ sin φ |Ae2̃Ae3̃| . (4.15)

The other δ-dependent terms in the probabilities, which are proportional to the square

of the small quantity |A
2̃3̃
|2, are

P δδ
µµ ≡ cos2 δ sin2 2θ23|A2̃3̃

|2 , P δδ
µτ ≡ (1 − cos2 δ sin2 2θ23) |A2̃3̃

|2 . (4.16)

Notice that the sum of these terms does not depend on δ and equals |A
2̃3̃
|2.

Let us present also the δ− dependent terms of the probabilities for other channels. As

we have already mentioned, P δ
τe = −P δ

µe, and for the reverse channels, according to (2.18)

we obtain

P δ
eµ = sin 2θ23 cos(φ + δ) |Ae2̃Ae3̃| , (4.17)

P δ
τµ = sin 2θ23 sin δ sin φ |Ae2̃Ae3̃| + D23 . (4.18)
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As was pointed out above, Pττ can be obtained from Pµµ through the substitution s23 →
c23, c23 → −s23:

P δ
ττ = sin 2θ23 cos δ cos φ |Ae2̃Ae3̃| − D23 . (4.19)

For antineutrinos, according to (2.19), the probabilities have the same form as the cor-

responding probabilities derived above with the changed sign of δ and the amplitudes

computed for the opposite sign of the potential.

Thus, the δ dependent terms in all channels are expressed in terms of two combinations

of the propagation basis amplitudes, |Ae2̃Ae3̃| and D23. In the case of the maximal 2-3

mixing (D23 = 0), only the first combination enters the interference terms. Furthermore,

for the channels involving electron neutrinos, νµ−νe and ντ −νe, only the first combination

is relevant, even for the non-maximal 2-3 mixing. For generic values of δ the CP-dependent

terms in all the channels but νe − νe are of the same order.

To assess the δ-dependent interference terms, one can consider the difference of the

oscillation probabilities for two different values of the CP-phase:

∆PCP
αβ (δ) ≡ Pαβ(δ) − Pαβ(δ0) . (4.20)

In practice this would correspond to fit of the probability with the true value of the phase

δ by the probability with some assumed value of the phase δ0. In figures 8, 10 and 11 we

show some examples of the oscillograms for ∆PCP
µe and ∆PCP

µµ for different values of δ and

δ0 = 0◦. Although the CP-oscillograms appear to have a complex structure, this structure

can be readily understood in terms of the three grids of curves, which we consider next.

4.2 “Magic” lines and interference phase lines

Let us first consider the νµ → νe oscillation probability, for which the equality

∆PCP
µe (δ) ≡ Pµe(δ) − Pµe(δ0) = P δ

µe(δ) − P δ
µe(δ0) (4.21)

is exact. The condition ∆PCP
µe = 0 is equivalent to

|Ae2̃Ae3̃| cos(φ − δ) = |Ae2̃Ae3̃| cos(φ − δ0) . (4.22)

The same condition holds for the νe − ντ channel. This equality is satisfied if at least one

of the following three conditions is fulfilled

(A) Ae2̃(Eν ,Θν) = 0 ,

(B) Ae3̃(Eν ,Θν) = 0 ,

(C) φ(Eν ,Θν) − δ0 = − [φ(Eν ,Θν) − δ] + 2πl .

(4.23)

The last condition implies

φ(Eν ,Θν) = (δ + δ0)/2 + πl . (4.24)
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Under conditions (A) and (B) the equality (4.22) is satisfied identically for all values of δ.

In these cases the transition probability does not depend on CP-phase. It is also satisfied

trivially if δ = δ0 + 2πn, since the true and assumed values of the phase coincide.2

In general, the conditions (A) and (B) can be satisfied at isolated points in the (Θν , Eν)

plane only. Indeed, in order for Ae3̃ to vanish, both its real and imaginary parts must be

zero. The conditions ReAe3̃ = 0 and ImAe3̃ = 0 each define a set of curves in the

(Θν , Eν) plane, and the curves from one set can only intersect with those from the other at

isolated points. The same applies to the condition Ae2̃ = 0. In contrast to this, as we will

discussed below, in the factorization approximation both the conditions Ae2̃ = AS = 0 and

Ae3̃ = AA = 0 are fulfilled along certain curves in the oscillograms. This happens because

the amplitudes AS and AA take a 2-flavor form. In the bases where the corresponding 2×2

Hamiltonians are traceless, both AA and AS are pure imaginary because of the symmetry

of the Earth’s density profile [11]. Therefore for AS and AA to be zero, it is enough to

require that their imaginary parts vanish. So, instead of conditions (A) and (B) in (4.23)

we will consider equalities AS = 0 and AA = 0.

In the factorization approximation the conditions in (A), (B) and (C) define three sets

of curves in the oscillograms (see figure 8), which play crucial role in understanding effects

of CP violation. Along the lines determined by (A) and (B) the probabilities Pµe, Peµ

Pτe and Peτ do not depend on the CP-phase. The other probabilities (as we will discuss

later) only weakly depend on the phase along these lines. The lines shown in figure 8 were

calculated in the factorization approximation, without assuming constant-density matter,

by solving numerically the corresponding 2-flavor evolution problems with the PREM Earth

density profile.

In what follows we will consider these lines and their connection to the conditions in

eqs. (4.23) in turn.

Solar magic lines. Let us discuss the condition AS(Eν ,Θν) = 0. Notice that at Ae2̃ ≈
AS = 0 the “solar” contribution to the amplitudes of the νµ ↔ νe and ντ ↔ νe transitions

vanishes, and

Pµe = Peµ = s2
23|Ae3̃|2 , Pτe = Peτ = c2

23|Ae3̃|2 . (4.25)

In figure 8 the condition AS = 0 determines nearly vertical lines at the values of the

nadir angle Θν ≈ 54◦, 30◦ and 12◦. This feature can be immediately understood using

the constant density approximation. Indeed, according to (2.41) the condition AS = 0 is

fulfilled when

sin φS(Eν ,Θν) = 0 . (4.26)

As follows from (2.42), eq. (4.26) is satisfied when

L(Θν) ≈
4Eνπn

∆m2
21

√

(cos 2θ12 ∓ 2V Eν/∆m2
21

)2 + sin2 2θ12

, n = 1, 2, . . . (4.27)

2In figures 8, 10 and 11 we show the lines of the condition (C) which correspond to certain values of

phases, which we denote by (δ+δ0)fig. According to (4.13) the interference term vanishes if φ = δ+π/2+πn.

Comparing this last equality with (4.24), we find that along the lines of the condition (C) the interference

term vanishes for value of phase δ = −(δ + δ0)fig/2 + π/2 + πn.
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Figure 8: Oscillograms for the difference of probabilities ∆PCP
µe (δ) = Pµe(δ)−Pµe(δ0) with δ0 = 0◦.

Shown are the solar (black), atmospheric (white) and interference phase condition (cyan) curves.
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Furthermore, at energies that are much higher than the solar MSW resonance energies in

the mantle and in the core of the Earth, Eν & 0.5 GeV, the condition (4.27) becomes

L(Θν) ≃
2πn

V
. (4.28)

Note that it is energy independent and determines the baselines for which the “solar”

contribution to the probability vanishes. In the plane (Θν , Eν) it represents nearly vertical

lines Θν ≈ const.

There are three solar magic lines which correspond to n = 1 (in the mantle domain)

and n = 2, 3 (in the core domain). The existence of a baseline (L ≈ 7600 km) for which

the probability of νe ↔ νµ oscillations in the Earth is approximately independent of the

“solar” parameters (∆m2
21, θ12) and of the CP-phase δ was first pointed out in [62] and

later discussed in a number of publications (see, e.g., refs. [63, 64, 15, 65, 66, 61, 67]). This

baseline was dubbed “magic” in [63]. The interpretation of this baseline as corresponding

to vanishing “solar” amplitude Ae2̃, according to eq. (4.28) with n = 1, was given in [61].

In [61] it was also shown that for neutrino trajectories crossing the core of the Earth there

exist two more solar “magic” baselines, corresponding to the oscillation phase equal πn

with n = 2 and 3, and the existence of the atmospheric “magic curves” was pointed out.

The three solar “magic” baselines, for which the amplitude Ae2̃ vanishes, can be clearly

seen in the left panels of figure 1.

In the 1-3 resonance region and above, the factorization approximation becomes invalid

since the angle θm
13 is large. As a result, Ae2̃ and AS become substantially different. Indeed

in the constant density approximation, eq. (2.26), the equality Ae2̃ = 0 is satisfied when

sin φm
21(Eν ,Θν) = 0 . (4.29)

For Eν ≪ ER
13 we have φm

21 ≈ φS. But for energies of the 1-3 resonance and above

φm
21 6= φS . In particular, for energies substantially above the resonance energy, φm

21 ≈ φ0
A,

and according to eq. (2.46),

L(Θν) ≈
4Eνπn

∆m2
31

. (4.30)

Thus, in the 1-3 resonance region, the condition sin φS ≈ 0 transforms into sin φ0
A = 0, and

the lines of condition Ae2̃ ≈ 0 bend. This can be seen in figures 8, where the solar magic

lines substantially deviate from the lines of ∆PCP
µe = 0.

In the antineutrino channel no level crossing occurs and φm
21 ≈ φS everywhere.

Atmospheric magic lines. The atmospheric magic lines are determined by the condi-

tion AA(Eν ,Θν) = 0. When the condition Ae3̃(Eν ,Θν) ≈ AA(Eν ,Θν) = 0 is satisfied, the

“atmospheric” contribution to the amplitudes of νµ ↔ νe and ντ ↔ νe transitions van-

ishes. In this case, too, there are no effects of CP phase on the probabilities of oscillations

involving νe or ν̄e.

The properties of atmospheric magic lines can be easily understood in the constant

density approximation. As follows from eq. (2.41), the condition AA = 0 is satisfied when
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sin φA = 0 (φA = πk, k = 1, 2, . . . ) or explicitly

L(Θν) ≈
4Eνπk

∆m2
31

√

(cos 2θ13 ∓ 2V Eν/∆m2
31

)2 + sin2 2θ13

, k = 1, 2, . . . (4.31)

For energies which are not too close to the atmospheric MSW resonance energy, the con-

dition (4.31) reduces to

Eν ≃ ∆m2
31

L(Θν)

|4πk ± 2V L(Θν)|
, (4.32)

which corresponds to the bent curves in the (Θν , Eν) plane. For very large energies, where

∆m2
31/2E ≪ V , the atmospheric lines approach the same vertical lines as the solar magic

lines (4.28).

Let us now consider the condition Ae3̃(Eν ,Θν) = 0. In the constant density approxi-

mation it gives, according to (2.27),

sin φm
32 = −eiφm

31 cos2 θm
12 sin φm

21 . (4.33)

In turn, eq. (4.33) implies two conditions which follow from the real and imaginary parts

of the equality:

sin φm
32 = − cos φm

31 cos2 θm
12 sin φm

21 , (4.34)

sin φm
31 sin φm

21 = 0. (4.35)

Both conditions can be satisfied simultaneously only at certain points of the parameter

space, which illustrates our general statement in the beginning of this subsection. However

at high energies cos2 θm
12

≪ 1, and the equality (4.33) approximately reduces to

sin φm
32 = 0 . (4.36)

Furthermore, since φm
32 ≈ φA in the energy range above the 1-2 resonance, in this channel

the factorization approximation works well. The atmospheric magic lines reproduce very

well the lines of ∆PCP
µe = 0. No interconnection of the atmospheric magic lines occurs.

The interference phase condition. Let us now find the lines in the (Θν , Eν) plane

which correspond to the interference phase condition (4.24). We shall call these lines the

interference phase lines. Consider the condition (4.24) in the factorization approximation.

Although Ae2̃ and Ae3̃ are pure imaginary in the bases where their respective 2× 2 Hamil-

tonians are traceless, their relative complex phase φ in any fixed basis is different from

zero. It just equals the rotation phase between the aforementioned 2-flavor bases. In the

constant density approximation (3.27) φ ≈ −φm
31. In the energy range between the two

resonances we have

φm
31 ≈ ∆m2

31L

4Eν
= φ0

A , (4.37)

i.e., in the first approximation φ does not depend on the matter density. From (4.24) we

then obtain
∆m2

31L

4Eν
= −δ + δ0

2
+ πl , (4.38)
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Figure 9: Grids of lines along which sinφi = 0 for different adiabatic phases φi. Dashed lines

correspond to φS (black), φA (red) and φ0

A (blue) obtained in 2ν context. Solid lines correspond to

3ν calculations: φm
21 (black), φm

31 (red) and φm
32 (blue).

or

Eν =
∆m2

31L(Θν)

4πl − 2(δ + δ0)
. (4.39)

This gives rather accurate description of the lines ∆PCP
µe = 0 below the 1-3 resonance.

In the 3ν framework φm
31 differs from φ0

A in the 1-3 resonance region. Above the 1-3

resonance φm
31 ≈ φS , and as we discussed before, the lines of φS = const (eq. (4.28)) depend

on energy. Hence, the interference phase lines become nearly vertical with increasing energy,

as can be seen in figure 9.

Summarizing, the phase φm
21 that enters into the amplitude Ae2̃ nearly coincides with

φS below the 1-3 resonance. However, above the 1-3 resonance it approaches the vacuum

phase φ0
A. In turn, the interference phase φ ≈ φm

31
, which approximately coincides with φ0

A

between the 1-2 and 1-3 resonances, approaches φS with increase of energy above the 1-3

resonance. The lines sin φS = 0 and sinφ0
A = 0 cross, whereas sin φm

21 = 0 and sin φm
31 = 0

do not. Thus, in the region of the 1-3 resonance, where the factorization approximation is

strongly broken in the 1-2 channel, interconnections of the lines occur: the contours of zero

∆PCP
µe transform (interpolate) from the solar magic lines to the interference phase lines and

vice versa. The interconnection is related to the level crossing phenomenon and reflects
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the level crossing scheme, it reflects the described change of the phases φm
21 and φm

31. To

illustrate this effect explicitly, we show in figure 9 the lines sin φS = 0 and sin φA = 0, which

represent the magic lines (defined in the 2ν context), and the lines sinφm
21

= 0, sin φm
31

= 0

and sinφm
32 = 0 which represent the conditions of vanishing amplitudes in the 3ν context,

that is, the contours of vanishing ∆PCP
µe . Clearly, they do not coincide with the contours

∆PCP
µe = 0, since we have taken into account the phase factors only. This grid reproduces

qualitatively well all the features of the lines shown in figure 8.

There is no level crossing in the antineutrino channels for the normal mass hierarchy,

and therefore there is no interconnection of the lines there.

4.3 CP-phase domains for channels involving νe

The solar and atmospheric “magic” lines and the interference phase curves allow a simple

interpretation of the CP oscillograms. The solar (nearly vertical) and atmospheric (bent)

curves divide the oscillograms into a set of domains, which are in turn divided by the

grid of the interference phase curves into sub-domains (see figure 8). From these figures

one can see that the interference phase curves are steeper than the atmospheric curves

in the case of neutrinos and less steep than atmospheric curves for antineutrinos, in full

agreement with eqs. (4.32) and (4.39). This fact is related with the sign in eq. (4.32). The

probability difference ∆PCP
µe (δ) vanishes at the borders of these sub-domains: On the solar

and atmospheric “magic” curves because the probabilities are δ-independent there, and on

the interference phase curves because they correspond to cos(φ − δ) = cos(φ − δ0). The

signs of the probability differences in the neighboring sub-domains are opposite, with the

maxima of the difference in the central parts of sub-domains.

As can be seen from figure 8, with changing the true (or assumed) values of δ, the solar

and atmospheric grids remain unchanged, whereas the grid of the interference phase curves

moves up or down, in accord with eqs. (4.28), (4.32) and (4.39). The constant-density

approximation results of eqs. (4.28), (4.32) and (4.39) reproduce the main features of these

curves quite well.

As can be seen from the figures, the borders between the regions of the positive and

negative CP-phase effect do not coincide exactly with the magic lines, especially in the

regions of intersection of these lines. This indicates deviation from the factorization ap-

proximation and is related to the level crossing phenomenon, as we have discussed in the

previous subsection.

4.4 CP-domains for channels not involving νe

As follows from our consideration in section 4.1, the δ-dependent parts of the probabilities

for the channels which do not contain νe have more complicated structure than those which

do. Apart from the term proportional the product of the amplitudes Ae2̃A
∗
e3̃

they contain

contributions proportional to the deviation of the 2-3 mixing from the maximal one as well

as terms P δδ proportional to the square of the small amplitude A
2̃3̃

. In what follows we

will neglect the latter.

In the case of the maximal 2-3 mixing the δ-dependent parts of the probabilities are

given in eqs. (4.14) and (4.15). Furthermore, P δ
ττ = −P δ

µµ and P δ
τµ = −P δ

µτ . From eq. (4.14)
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Figure 10: Oscillograms for the difference of probabilities ∆PCP
µµ (δ) = Pµµ(δ) − Pµµ(δ0) with

δ0 = 0◦. Shown are the solar (black), atmospheric (white) and interference phase condition (cyan)

curves.
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it follows that for θ23 = 45◦ the CP-oscillograms for the survival probability Pµµ can be

interpreted in terms of the same grids of the solar and atmospheric “magic” curves AS = 0

and AA = 0 that we used for the analysis of the oscillograms for Pµe and Pτe (see figure 10).

The key difference from the previous case is that now the CP-phase and the interfer-

ence phase dependencies factorize. In the interference terms P δ
µµ and P δ

ττ they appear as

cos δ cos φ. Therefore, the third grid describing oscillograms in these channels consists of

the interference phase curves

φ ≈ −φm
31 =

π

2
+ πn , (4.40)

which, unlike the interference phase curves for the νµ − νe and ντ − νe channels, do not

depend on the values of δ and δ0. The difference between the probabilities calculated with

the true and assumed values of δ (as well as the effects of δ in general) vanishes on the curves

of all three types and take maximum values in the central parts the domains delimited by

these curves. The borders of the domains do not move with change of δ, and the only

change that happens is that within each domain the probability varies proportionally to

cos δ.

The δ dependent terms of the transition probabilities, P δ
µτ and P δ

τµ are proportional

to sin δ sin φ. Therefore for these probabilities the interference phase condition reads

φ ≈ φm
31 = πn , (4.41)

Again the borders of the domains do not depend on δ and with changing δ the interference

terms vary as sin δ.

Notice that the borders of domains are rather stable with respect to variations of the

neutrino parameters. Since the grids are determined mainly by the phases, their depen-

dence on the 1-3 mixing is weak. With the decrease of the 1-3 mixing angle in vacuum the

grid lines becomes closer to the lines of vanishing ∆PCP
µe . Since θ23 is experimentally known

to be rather close to 45◦, the discussed solar, atmospheric and interference phase curves

give a rather good description of the CP-oscillograms for Pµµ even when θ23 deviates from

the maximal-mixing value (see figure 11).3

4.5 Sensitivity to the CP phase in the νµ − νe channel

Let us now identify the regions of the experimental parameters Θν and Eν for which the

oscillation probabilities have maximal sensitivity to the CP phase δ.

Consider the variation of the oscillation probabilities with varying δ while all the other

oscillation parameters are fixed. As follows from eq. (4.8), the maximal variation of the

probability Pµe with δ changing between 0◦ and 360◦ is

∆Pmax
µe ≡ max[Pµe(δ)] − min[Pµe(δ)] = 2 sin 2θ23 |Ae2̃Ae3̃| . (4.42)

(Note that a similar quantity was considered in [68]). This quantity is maximized when

|Ae2̃Ae3̃| takes the maximum possible value. Let us now discuss the dependence of |Ae2̃Ae3̃|

3Actually, the correction due to θ23 6= 45◦ is of the order 1
2

cos 2θ23 . 0.15.
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Figure 11: Contour plots for the probability difference ∆PCP
µµ (δ) = Pµµ(δ)−Pµµ(δ0) with δ0 = 0◦

and δ = 180◦. Upper panels: s2
23 = 0.4, lower panels: s2

23 = 0.6. Shown are the solar (black),

atmospheric (white) and interference phase (cyan) curves.

on the experimental parameters Θν and Eν in the factorization approximation. For mantle-

only crossing trajectories it is sufficient to use the constant-density matter factorization

approximation, in which

|Ae2̃| = sin 2θm
12 | sin φS | , |Ae3̃| = sin 2θm

13 | sin φA| . (4.43)

Thus, we have to find the maxima of the quantity

A ≡ sin 2θm
12 sin 2θm

13 | sin φm
21 sinφm

31| (4.44)

with respect to Θν and Eν . To do this exactly is a rather complicated problem, and the

result would be bulky and not easily tractable; fortunately, an approximate maximiza-

tion can be readily carried out by studying the energy dependence of the different factors

in (4.44).
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First, recall that for energies Eν & 0.5 GeV the “solar” phase φS is essentially energy

independent. Therefore sin φS can be considered a constant factor when maximizing A with

respect to the neutrino energy. The maximum | sin φS | = 1 can be achieved by properly

choosing the values of the baseline L. These are approximately equal to the central values

of L (i.e., of cos Θν) between the solar “magic” lines in the oscillograms of figure 8 (note

that in the second band, due to the existence of the mantle-core boundary, the maximum

is shifted from the center).

Next, consider the extrema of the remaining factor, sin 2θm
12

sin 2θm
13
| sin φA|, with re-

spect to the neutrino energy for fixed L. To do this, we make use of the fact that the

function

f(Eν) ≡ sin 2θm
12 sin 2θm

13 (4.45)

varies with Eν significantly more slowly than sinφA. If f(Eν) were constant, the maxima of

A with respect to Eν would coincide with the maxima of | sin φA|; in reality, the (relatively)

weak energy dependence of f(Eν) on Eν leads to a slight shift of the exact maxima A from

those of | sin φA|. The main effect of the energy dependence of f(Eν) is actually to modulate

the maxima of | sin φA|. In other words, the maxima of ∆Pmax
µe nearly coincide with the

absolute maxima of | sin φS sin φA| (equal to 1), which are achieved by a proper choice of

the values of the nadir angle and energy; the actual height of the local maxima of ∆Pmax
µe

is determined by the value of f(Eν) in these maxima.

This is illustrated by figure 12. In the Θν direction, the maxima of ∆Pmax
µe correspond

to the maxima of | sin φS |. This fixes the values of the baseline L. The vertical “domain

structure” (i.e., the structure in the energy direction) is due to the oscillatory dependence

of | sin φA|. For fixed L the energies En at which ∆Pmax
µe has maxima are approximately

found from the condition | sin φA| = 1, or φA ≈ ω31L = π/2 + πn. The heights of these

local maxima are determined by f(En).

To find out which of the peaks of ∆Pmax
µe are the highest, one has to consider the

maxima of the envelop function f(Eν). We will do that here for the resonance channel

(neutrinos); the analysis for antineutrinos can be easily performed along the same lines.

The condition df/dEν = 0 yields the third-order equation

2x3 − 3x2(cos 2θ13 + r∆ cos 2θ12)

+ x(1 + 4r∆ cos 2θ12 cos 2θ13 + r2
∆) − r∆ cos 2θ12 − r2

∆ cos 2θ13 = 0, (4.46)

where x is defined in (3.18). For sin2 2θ13 . 1/9 it has three solutions, which correspond

to two maxima of f(Eν) and a minimum between the two maxima. Expanding in r∆, we

find for the position of the low-energy maximum

x1 ≃ r∆ cos 2θ12 + r2
∆ sin2 2θ12 cos 2θ13 , (4.47)

or

E1 ≃ ER
12 (1 + r∆ sin 2θ12 tan 2θ12 cos 2θ13) . (4.48)

Here ER
12

is the energy of the 1-2 resonance (which corresponds to x = r∆ cos 2θ12). Thus,

the low-energy maximum of f(Eν) practically coincides with the low-energy MSW reso-
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Figure 12: Contour plots for the probability difference ∆Pmax
µe = maxPµe −min Pµe for δ varying

between 0◦ and 360◦ and all the other oscillation parameters fixed. Also shown are the solar (black)

and atmospheric (white) magic curves. We set ∆m2
21 = 8 × 10−5 eV2 and sin2 2θ13 = 0.05.

nance, and the 1-3 mixing produces only a slight (O(r∆)) upward shift of the position of

the maximum.

The minimum of f(Eν) is given by

x2 ≃ 3

4
cos 2θ13 −

1

4

√

1 − 9 sin2 2θ13 , (4.49)

while the second maximum is at

x3 ≃ 3

4
cos 2θ13 +

1

4

√

1 − 9 sin2 2θ13 . (4.50)

Recall that the MSW resonance energy in the 1-3 channel corresponds to x = xR
13 ≡ cos 2θ13.

Consider the dependence of f(Eν) on Eν for different values of the 1-3 mixing. For

θ13 → 0 we have x3 → 1 and x2 → 1/2, i.e., E3 → ER
13

and E2 → ER
13

/2. Thus, in this

limit the positions of the maxima of f(Eν) coincide with the 1-2 and 1-3 MSW resonance

energies, while the minimum is approximately in the middle between them.

At maxima, the values of function f can be estimated as f(x1) ∼ sin 2θ13 and f(x1) ∼
r∆ sin 2θ12.
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With increasing 1-3 mixing, the minimum of f(Eν) shifts to larger energies:

x2 ≈ 1

2
+

3

4
sin2 2θ13 , (4.51)

whereas the second maximum moves to lower energies:

x3 ≈ 1 − 3

2
sin2 2θ13 ≈ xR

13 cos2 2θ13 . (4.52)

For sin2 2θ13 = 1/9 one has x2 = x3 = 1/
√

2, i.e., the minimum and the second maximum

of f(Eν) merge. This just corresponds to the situation when the local minimum of the

cubic function on the l.h.s. of eq. (4.46) touches the x-axis.

For sin2 2θ13 > 1/9 only the low-energy maximum of f(Eν) persists. Thus, for these

values of sin2 2θ13 the effect of the CP phase is maximal at the 1-2 resonance and decreases

with increasing energy. For the other value, sin2 2θ13 = 0.05 (which in fact is not too

small), we find x2 ≈ 0.57 and x3 ≈ 0.89.

These results allow one to readily understand the oscillograms for ∆Pmax
µe (figure 12),

at least for mantle-only crossing neutrinos. For sin2 2θ13 = 0.05 the minimum of ∆Pmax
µe is

situated at Eν ∼ 3 − 3.5 GeV (x ≈ 0.57), which can be seen in the strip between the first

and the second solar magic lines: the peaks increase in height both with energies decreasing

and increasing from Eν ∼ 3− 3.5 GeV (in contrast to this, for sin2 2θ13 = 0.125 the height

of the peaks would monotonically decrease with increasing neutrino energy). Note that the

situation is somewhat different in the strip between the Earth’s surface (Θν = 90◦) and the

first solar “magic” line: the peak at Eν ∼ 5 GeV is actually lower than that at ∼ 3 GeV

because the baseline is relatively short, and at high energies the oscillation phase φA is too

small for the condition | sin φA| = 1 to be satisfied.

For core-crossing neutrino trajectories the constant-density approximation is not in

general applicable, and a different approach is necessary. The maxima of ∆Pmax
µe in that

case can, in principle, be analyzed in the factorization approximation by making use of

simple formulas for 2-flavor neutrino evolution in 3-layer matter density profiles obtained

in [31]. In figure 12 one can see strong enhancement of the difference of amplitudes in the

core domain at Eν ∼ 2.5 GeV, which is apparently due to the mantle-core effect.

4.6 Sensitivity to the CP phase in the νµ − νµ channel

Let us now discuss the sensitivity of the survival probability Pµµ to the phase δ. For other

discussions of this issue see, e.g., [52, 54, 55]. From eq. (2.16) one finds

Pµµ = |C + D z|2 , (4.53)

where

C = c2
23A2̃2̃

+ s2
23A3̃3̃

, D = 2 s23 c23 A
2̃3̃

, z ≡ cos δ . (4.54)

The maximum and minimum values of Pµµ with varying δ then correspond to the maximum

and minimum of the modulus of the complex number C + D z when C and D are fixed
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and z is allowed to vary between -1 and 1. A simple geometrical consideration then shows

that for

2 s23 c23 |A2̃3̃
|2 ≤

∣

∣Re[A∗
2̃3̃

(c2
23A2̃2̃

+ s2
23A3̃3̃

)]
∣

∣ (4.55)

the minimum of Pµµ corresponds to δ = 0 and maximum to δ = 180◦ or vice-versa, so that

for ∆Pmax
µµ ≡ max[Pµµ(δ)] − min[Pµµ(δ)] one finds

∆Pmax
µµ = |Pµµ(δ = 180◦) − Pµµ(δ = 0◦)|

= 8 s23 c23

∣

∣Re[A∗
2̃3̃

(c2
23A2̃2̃

+ s2
23A3̃3̃

)]
∣

∣ .
(4.56)

If, on the contrary,

2 s23 c23 |A2̃3̃
|2 >

∣

∣Re[A∗
2̃3̃

(c2
23A2̃2̃

+ s2
23A3̃3̃

)]
∣

∣ , (4.57)

then for the maximal variation of Pµµ with δ one finds

∆Pmax
µµ =

(∣

∣Re[A∗
2̃3̃

(c2
23

A
2̃2̃

+ s2
23

A
3̃3̃

)]
∣

∣

|A
2̃3̃
| + 2 s23 c23 |A2̃3̃

|
)2

. (4.58)

Note that A
2̃3̃

is a small quantity, so that the condition (4.55) is satisfied in most of

the parameter space. Exceptions are the regions where the “main” contribution to ∆Pmax
µµ ,

i.e., |c2
23

A
2̃2̃

+s2
23

A
3̃3̃
|2, is anomalously small, that is the regions along the magic lines. This

is illustrated by figure 13, where we show the oscillograms for the maximum probability

differences ∆Pmax
µµ for δ varying between 0◦ and 360◦. The areas corresponding to the

regions where the condition (4.55) is not satisfied occupy a rather small fraction of the

parameter space. Moreover, ∆Pmax
µµ is small in these regions, so that they correspond to

low sensitivity to the effects of the CP phase. Note that these regions would never appear

if one neglected the term of the order of |A
2̃3̃
|2 in the expression for Pµµ.

For the regions where the condition (4.55) is satisfied, one can obtain a simple expres-

sion for ∆Pmax
µµ in the limit θ23 = 45◦. From eqs. (4.56) and (4.1) one then finds

∆Pmax
µµ = 2 |Re(Ae2̃A

∗
e3̃

)| . (4.59)

Thus, for θ23 = 45◦ the oscillograms for the maximum probability difference ∆Pmax
µµ are

also governed by the solar and atmospheric “magic” curves, as well as by the interference

phase curves (4.40), in full accord with our discussion in section 4.2.

5. Discussion and conclusions

The main purpose of the present paper is to gain a physics insight into the complex pattern

of full 3-flavor neutrino oscillations in the Earth. To this end, we presented a detailed de-

scription of the three-flavor neutrino oscillation effects in the Earth in terms of the neutrino

oscillograms, i.e., contours of equal oscillation probabilities or probability differences in the

neutrino nadir angle – energy plane.

We have found that for very small or vanishing 1-3 mixing the oscillation pattern ap-

pears in the low energy region with large (maximal) transition probabilities below 0.3 GeV.
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Figure 13: Contour plots for the probability difference ∆Pmax
µµ = maxPµµ −min Pµµ for δ varying

between 0◦ and 360◦ and all the other oscillation parameters fixed. Also shown are the solar (black)

and atmospheric (white) magic curves. We set ∆m2
21 = 8 × 10−5 eV2 and sin2 2θ13 = 0.05.

In the mantle domain the oscillation pattern consists of three MSW resonance peaks, which

correspond to the oscillation phases π/2, 3π/2 and 5π/2, and the parametric resonance

ridge in the core domain at Eν ≈ 0.2 GeV and Θν ∼ 28 − 30◦.

For non-zero 1-3 mixing the oscillograms consists of the low energy pattern, where the

effect of the 1-2 mixing dominates, and the high energy pattern, determined mainly by the

1-3 mixing and mass splitting, if the 1-3 mixing is not too small. The low energy pattern

is modulated by the high frequency and small amplitude effect induced by the 1-3 mode,

whereas the high energy structure is modulated by the low (refraction) frequency small

amplitude effect due to the 1-2 mass splitting and mixing.

We studied in detail the effect of the 1-2 mode on the oscillograms for energies Eν >

1 GeV. At these energies, if θ13 is not very small, the oscillation pattern is determined

mainly by the 1-3 mixing and mass splitting, whereas the 1-2 mass splitting and mixing

lead to small corrections. In the νe − νe channel the interference of the 1-2 and 1-3 modes

is strongly suppressed, and the effect of the 1-2 mixing is due to corrections to the 1-3

mixing and the atmospheric phase. In the νµ − νe channel the effect of the 1-2 mixing is

dominated by the interference of the solar and atmospheric amplitudes. These corrections

have a domain structure in the Eν−Θν plane. In the νµ−νµ and νµ−ντ channels the effect
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of the 1-2 mixing is essentially due to the corrections to the phase of the main (vacuum)

oscillation mode. This consideration is important in discussions of the degeneracies of

parameters in terms of the oscillograms.

We studied the properties of the interference of the amplitudes Ae2̃ and Ae3̃ and, in

particular, the effects of CP-violation which are associated with this term. The structure

of the interference term is simply and rather accurately determined in the factorization

approximation, when one has Ae3̃ ≈ AA(∆m2
31, θ13) and Ae2̃ ≈ AS(∆m2

21, θ12). This

means that the dependence of the parameters of 1-2 sector and 1-3 sector factorizes in the

interference term. This approximation does not work in the resonance regions.

We showed that the interference term, and therefore CP-violation, exhibit a domain

structure in the Eν − Θν plane. The borders of the domains are determined by the grids

of magic lines (solar and atmospheric) and by the lines of the interference phase condition.

In the neighboring domains the sign of the CP effect is opposite. Beyond the factorization

approximation the interconnections of the solar and phase condition lines occur, which are

related to the level crossing phenomenon.

We studied the dependence of the probabilities on the CP-phase. The character of

the dependence on the CP-phase is different for survival and transition probabilities. In

the standard parametrization, the νe survival probability does not depend on δ. For the

survival channels νµ − νµ and ντ − ντ as well as for the transition channel νµ − ντ all three

sets of the lines — the borders of the domains — do not depend on δ. Within a given

domain the interference term changes as ∝ cos δ in the νµ − νµ channel, and as ∝ sin δ

in the νµ − ντ channel. For the probabilities of transitions which involve νe, i.e. νe − νµ

and νe − ντ , the interference phase condition depends on δ, so that with changing δ the

corresponding lines move. Therefore, the modification of the pattern of CP violation is

determined by this motion of the interference phase lines.

The phase δ can affect significantly all the oscillation probabilities but νe ↔ νe. Thus,

in principle, one can study the effects of leptonic CP violation by precision measurements of

the energy and zenith angle dependence of these probabilities. We find that the strongest

variation of the probability with δ occurs in the region of the 1-2 resonance. For sin2 2θ13 <

1/9 the local maximum appears in the 1-3 resonance region. The weakest variation is at

Eν ≈ 0.5ER
13

.

Many features of the oscillograms discussed in this paper are unobservable in the

present and forthcoming experiments. The accelerator experiments cover only several pe-

ripheral regions of the oscillograms, which correspond to large values of the nadir angles

Θν > 77◦. The large underwater and ice detectors have high energy thresholds E > 15 GeV.

Thus, the most interesting and structured regions of the oscillograms turn out to be uncov-

ered. Measurements of the oscillograms with atmospheric neutrinos could be performed us-

ing multi-megaton water Cherenkov detectors, which will have sufficient statistics in the en-

ergy range E >1–2 GeV, where the energy and angular resolutions are good enough [69, 70].

Detailed consideration of various features of the oscillograms performed in this paper can

help develop methods which will enhance the sensitivity of future experiments to the CP-

violating phase and other neutrino parameters.
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